REBOL [
    Title: "Grey-Soft: Bluetooth Accelerometer Acquisition 2.0"
    Date: 06-jul-2010
    Version: 2.0
    Author: "François Jouen"
    File: %gsdemo.r
    Purpose: {
        Using GS bluetooth XYZ devices with Rebol. This a demo version. 
    }
    library: [
        level: 'intermediate
        platform: 'all
        type: [tool demo] 
        domain: [gui]   
        tested-under: 'win 'Mac OSX 
        support: none 
        license: 'pd 
    ]
    
]


set 'app-dir what-dir
set 'data-dir: join app-dir "data/"
if not exists? data-dir [make-dir data-dir]

; load our images for menu

;irc.png

img: load 64#{
/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0V
FhEYIx8lJCIfIiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/wAALCABI
AQ0BAREA/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgED
AwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2Jy
ggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1
dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJ
ytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/9oACAEBAAA/AMxz87fU1eGh
6iIEnliS3jk+4biVY930DEGo7nSdQs41kubZoo3YKkjEbWJ9D0I96sP4b1eO3S4e
2VYZMbJGmQK2emDmq19pd/ppX7bayQh/usw4b6EcGrEPh7VZ7T7XFbBrf/nqJU2j
8c1HPomo21mbySAfZ1IUyLKrAE/Q1I/h3Vo7L7c9qBbbd3m+au3H1zVWysLrUHZL
VA7KpYguF4HU8mq7AqxUkZBxwc17B4P/AORU0/8A65n+ZrVubmCzt3uLmVYooxln
Y8CqX9vWK7POM1v5hCxmaFk8wnpjI/SrN9qFpptuZ7y4SGPOMsep9AO5qsde0+No
xO8lsJjiNp4mjVj9SMfnVi+1G2022NzdOyQj7zhCwH1xVRPEmmS232qOSZ4Of3i2
8hXjrztp3/CQ6YRblJ2k+1IZIRHE7FlHfAFRxeKNJnkkjhnkkeL/AFipBISn1GK0
LK9t9QtEurWTzIZM7WwRnBx3+lT0UUUUUUUUUUUUV5P4J0+HUPEyi4UOkCtLtPQk
HA/nmq/i+eW88VXgbc5jfykXrgAdBVJ5NQXSvsMsEwt0l81S8bAIcYP0BrstTsLj
UvAGj21qivKzR7VZwuflbpmqviKeLSvB9p4fumEmoKFcgciMZJ6/pU+iRed8Mr2I
PGm53G6RtqjkdTXL6rA+izy6bHKjpLBEZShyrHAbIroPA+oQ3trc+HL47op1YxZ/
8eA/mPxrD1Gyfw8txYyMDdTEqzA/dhB4/FsfkPetLR/B9jqelQXkutJbvKCTEQvy
4JHc+1aUPie78PRjSLbS5L6G0JRLhc4kHXPAI7+tbWv2t74h8JRPbRmK5bZOIScH
I5289/8ACsiw8Yx3pGk+I7Vrebco83bgBgQQSD93kdelM1KZtS+JlpaTnMFsw2Ie
mdu7P54/Kuj8YwJP4Vvg4B2R71z2IOa521vZrz4W3fnsWaEGIMepAYY/nj8Km8K6
u9poelWSWs/+kXJQzFP3YG4kjPrxiuut7C2tWDQxhSqlB7KSTj8zXG+Cv+Rs1r6t
/wChmu3ggjto/LiUKu5mwPUkk/qakooooooooooooorxXRtWl0TWEvol37SQ6Zxu
U9RWhrqWGsai+p6dqNvH5+GkhuH8t42xg+xH0q94p1yzvtC0/TbW886aHb5zLnYc
LjqevNP1bVLGXwdp9ja6lCby0ZHIUsMEA9Djrk0anq+leJvDsTXl1Ha6tbjA3KcP
68gdD+hpdN1DTYvA1zpE2pW8d1MWKg7iBkjGSB7ViLb2KWc9xd6pbzzxweXbwRBi
SegJJAHApnhqaC1161u7m4jhhhfczOT6HoB1qz4wurXUNdkvbO5jnhkVQNucggYO
QRWBtB6gV7F4O/5FPT/+uZ/masayNQC2smmxCWWOcM6M+0FNpBGfx/OsjxDpj+JY
ILdNNkgnEgLXEwUeWvcAgnd9KNc8OXP9rWet6UFe4ttokhdseao44PrjiptdbUtb
0xtNstPmga4IEstxtVY1zk9Ccn6U2/0N7Lwa+i6fC9xK6Y3DAy2QSTk8VL4U0+ez
0KGx1C1aOWGQvyQRndkEEGt522IWCs2Oy9TXIeF9K1LTvEOoXd3YvHDdk7GDKcZb
POD6V2NFFFFFFFFFFFFFFeeX/gCy062e6utZdIwccW+SSTwAAeTUVt4FsrlWLarc
W5VgpW5tfLOSM8ZPNWE+HNnIyqmuhiwyoEanI9R81Ivw7snR3TXlZU+8wRSF+vzc
VA/gfS0vYrNvEH76YEoBEMHBx1zVqb4awQQvM+rybI1LNiAdAM+tUbHwXY38XnJq
V3FCVDrLPabEYHpgk1bHw6smIA14Hc20YjXk+n3utQWfgWwvpJootZcSQzNCyvCo
JK9SBu5HNWF+HNo5cLroYx/fAjU7fr83FdL4fnsrOwfTYrrzV04Kkk7YVW3fMCDn
3q7Z6vZ3ttJcJIEiilaItIQoLA44OelO1DVbTTLJ7u4kGxV3AKQWYew71aRxIiuO
jAEVnLr1m920EazyBJPKeVIWMav6Fugq8LiEqjCaMh87TuHzY649arXGsafaxxyS
3cWyWURKysCNx9cdKs/aIPMWLzo97DKruGSPUCmi8tSCRcwnAyfnHA9amVg6hlIZ
SMgg8GloooooooooooooqhrNk1/pz26wQT7iMxzkhSM+o5B9DWDF4UuysMdw8b2y
XiTfZXlaVY0CkEAsMnJPTpRa+Eri0ktZYBaxTQ3Mz71HIRgQo6c4yOOlQ2/hPUlt
tQSVrYSXVmIMq5wz5+8RtGB7CtJ/DzQ6jpl1aW9pstYzHLGw28nHzDA5IwfzrbvI
muLKeFCA0kbKM9MkYrlk8MXn/CPS6Z9mtIpHjjUyrO7eYVYE5BHHQ9KdceDyZruS
2htYt93DLAQMGNVxuHTjOO1L/wAIveyam8rG2ijN7Jci4QkzYYYC9Px61Wj8GXq2
UtvugSXyDEJ1lb94NwOCuB1xzyanPhe/dLh/Kso991DOtshPlMEXBU8d+vSmnwnf
G2hybbdFdTTG3ViI2V+gBxwR9KiuPB981uYoUtCHtfIVZZGbyDvLZUkc5B9q7KFD
HCiHqqgH8q5tvDt42tLeQrBZ/v8AzJJYJn/fJn7pjPy5Pc1UsvDk8ranbPHm1g8y
GxSTKDDncxBHOOwI96cnhXUFsBG32OR4ruOaOJxwVUYKswUZz9KlPhe6/td7tlhk
V7hJ1bzWRoiMfKAF5A7cimWng0RmxM8Fo5iE/wBo4z5m7Oztzj3re0Gxl0zRLWyn
ZWkhTaxU5HXtWhRRRRRRRRRRRRRRRRSAg5wc460tFFFFISAMkgD3paKKKKKKghvb
S4uZraG5iknt8edGjgtHnpuHbNT0UUUUUUUUUVHPPDawPPcSpDFGNzyOwVVHqSel
LDNFcQpPDIskUihkdDkMDyCD6U+iiue8Za/qfhzR5L/T9LjvEhjaSaSWfYsYGMcY
JYnPb05NY+m/EeN9U8PaPfQRG81e0WeSSCT5IWYFkXacnkD17irOt+MbvTNa1iz+
yxfZNO0k3hnVyX8wnCqR0GcH8qT4eW2i6dYS2NnfJdatsjl1RhMXbzWHfJx1yOPx
q9Z+PvDl/f3lpBfj/QoWmlmZCsWxW2khjwQCccUyx+IPh3UHsY4LqTzdRlaO1jMZ
3SAEjfjsuQeTjpV3xR4ktfC+kSX1ykrna3lpHEz5YKTzgfKOOpwKwNC+IMMfhGLU
/EYube5LYYGzeMSM2SFiXq+FxyPrWleeP9EtLHTbpftV0dUXfawW0BeV17nb2rG8
czaVqWv6bpuuXX2bSbW2kv7xXkMYc5CRqcHOcljgeldJrHivRPD2lW17c3OYbgKL
WOEb3nzjGwd+CKfYeK9F1O61C3tLxZDpqg3T4+SPrxu6HG05xXO33xL06+0jWv7A
nIvdPszcpJdQMkbLxgjPJzkYz1JHardp4hg8I+DNMuPEl9cz3lzD5jAqZJXcjewA
HZc/QACp5PiL4Yg0ez1S4vzDDeqXiVomL7Q20sVAJAyMZPFWI/G2i3HiC20O0me6
uriLziYl+WJNu4FicYyMcdeRVrS9Z07xVpdxLpd1K0G97fz4wUO4DkoSO2eD61wX
gHxD4X8PXt/pX2u5a7vtXlijlljdzJghUDSYwSeT+PauysPHXh7UtSu7C1vS72cL
TyyFCI9inDMG6EA8cehpNN8caPqej3esKLq20+05a5uYCiyD1Tu3b8xVC3+KPhu6
BWFrtp/tKWqW5gKySO3TCntxznGOK2ofFnh+4mihh1mzkkmnMEaLKCWkHVR+Y/MV
BqvjPQ9H1m20i7uW+2XLoipHGWCFzhdxHC5PTNP0rxRa61rV/p1jBNImnOYri5O0
IJQeUAzuPfnGOKh1bUNOufENhpP9vS2t5CxuZLW3b/WIoziQ4+Ve+CRmq3/CyfC5
ilmF8xjS5FtG6xk+fIcZEYHLAZGTjHNaTeKtGHiOPw8LxX1J1LeSik7ABu+Y9BxX
OyeMheW2sQanexaNbi8NjYXNtJ5k0rjG4qMHJGQOOhz6ZrYs/E1jHrUnhyE3Fw+m
QKb28mdQsQ25BZmILE9yBjnmuK8bjR9a8J6jrq+JNRvLN72OKOJXKwKQyqQFA+YA
Fjnv71r6z48s5fBGpy+EblY7jTRHDtngdDGGO1QqsOW9AfTmti88TaZ4I0Wwt9d1
C4muTCNzFTLK5H3nOO2T1+ldNG6yRrIhyrAEH2NOqhrmntquhX+nIUDXVu8SmQZU
FlIyfzrip/hRbx+DYNNsbsLrFtMtxFqTAhvMGBzjJ2hRgDtgVc1nwVenwPfaTYTC
61XVZIze305AMh3Dcx9AAMBR0HSsyP4f67omu37+F7m10+xuNPSHew3yPIq9h2JP
Vjnqak8I+CfEHh7SGURaTBcm2dX2bpJLlyDs3yNwigkHCg9KitfhfqWmHw8dL1KC
2uLHzXvbto/MdndQvyAjBAGQM8DrjrXSfEDTdW1LwRd6dpCm4upgiMpYKZE3Ddzw
Bkf1rmte8IeLvEd9pE9/DpclpbmQtpzSusUIKhVBZfmc9TkYHboasHw14y0/xbYa
pZ/2VdrHp7Wp3KYIbbL5wqDJIAx9cHOKj1r4fal4j1nVdQ1dbWeRdLFtYlMqjTlS
d+0k7QCxAySec08+CPEup+FdJ0PV7+18qGaIz+QCrRQxrjardWZjjJ4AxxTLj4d6
ysfieGy1C3tbLUkxbWcEYG/CBUDsR8oHTA69Sadc/DvVn8HXFoLy1m1m/a3W5lkB
ESxRbdsa99oC/ic1NrngfxHq2raZO2txsFtp4Ly4EQQokmMrEg6fLlQSeMZOa5zx
n4H1aCXU5redbfSG+w2drboAWlQMq7c9QoZifc4Pauk8U+E3bxDceJr3U/s+kWmm
GKW3iJV5VGWKFh0U8ZwcnpWz4O06Twz8PrGD7K0s8VsZngiHzO7ZYqM98nFYnhvw
Vq8Oivdaq8S6kkc76fbIfktJZdzF2Pd8sBnoAOKy9M+HXiOy8H3mnoul2lzcWjxS
NFukmumOcK0jcIvPRR1q/qHhnxnrXgm30m4Gl2klsLcRQIzNuMZHLv0AwM7QD061
Hq/gK9lm0PTlaacT3015q+oxlUYuy4OO6gglRjoPeq8HwovLa1N9Zf2da6yurC8g
bDGKGFc7Yxxnvn3wKlsfAPiWLxVfanc3On3cryJ9n1K9UySxhRjcsS4Tdg8Z6Yrf
8N+Gb228W6l4lvI47E3sYiFnC+7fg/62QjjccdB0yeTVe88H6o3xKTxBp0lpZ2f2
ZUnYRhpJjuy4x0yQANxzgdKx5fhjqr6alxFc2cesz6st9PM4LpEgZmCJxyASCRxk
/QVp+IvBmu6hruhX2nasI57aCWC8v3jUSFWGNyqBjPLAenFJ4o+H73Gl6DY+HYrW
F9LuUbz7kZIQZY5I5OWwSOMmnweDL6/8VvrOqpbhYrJrNxhSdROMeZKoG1V6ELye
BnpXPWfgzxhp/h7TdBBtZXN6l1u2/uLTYxcl26uzMV+UDGF/Gui1vwNfPodjZaPc
wNdDUo72+urxSTcOuSWYDrzj5emBis7VfA3iPUPF8WoXMmnarDDZrFHLqAKqsm7c
W8pODg9icdMnivQ7KKeCyhiupxcTIgDyhAgc+u0dPpU9FFFFFFFFFFFFFFc9qmn6
hrmuWsE0K2+k2E6XDOXBe7kUZRQB0RW5OeSQOMc1L4n0y71qGz0yJQLKa4V76TcA
fKT5tgHfcQB9M1uUUUUUUUUUUUUUUUUUV//Z
}

img0: load 64#{
iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAYAAADDPmHLAAAABmJLR0QA/wD/AP+g
vaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42uyce3TU5ZnHv4owq4xm
O+1sx3Fns2kcp+yYWXbSNDkTwyZpZpN0SMxlc21iCCwoiOFiuCOEaBSwoixSQa3S
9QaIGqgtiqCI4gUUEEFkESkiIKBtoZQjcvnsH793ICL6R/cccMbJOc85yS+T6/N5
n+/zPO/7PgKUsO+ufbf+WOmCr7MEAPHt8AsldZPUXVIPSbYu1sM872Zed0ECgPhz
/kXG0RdL6inp0i7W0zy3dQHhggQAsev0U6v9cema56SOZdKLL0i7V0hfvCDxe+lY
p7TnCWnVXOmucVKhJIekyyRdYmC56LsQFeJuxQ+TbM9LQ16Rtr4u8YbE6xKvSbwq
sUriJYnlEkslfiuxSOI30gdTpVa35JRkl/R33wVpiKdQ361T+tlq6X/XSrzdxd6S
WCPxpoHhbCAsllggcb+0Y4D0C0keST8wMmEzESHuEsa4Cfsrpfa10vF1Ehsk3pHY
5HCwyeVis8fDJo+HjR4P77jdrHc6WWOz8brEKwaEZSYaPCnxkHRigjRH0o8k/bAL
BBcmAPiWOd8ndX9V+s3bxvHv2mxscbnYlpLCdp+PD9PS2NG7NzuCQct692ab38/7
Xi8bPR7W2u2sllhpIFhiIsHDEpOlJd2kXpKukPQ9IwtxFQlifuW/Is1eJ7FR4j2H
g23JyfzB7+fjjAz25uSwLz+fT8NhPiso4NP8fA7k5vJJTg4fZ2Wxo3dv3vf5WO9y
nYLgOYlOicctOWCMtFDSvxgILjUQdEsAcP6d3+1Fqf/bxvlbnE62p6ayKxjkQF4e
h6uqONG/PwwaBM3NHKur42hlJUdKSzkUifCnwkL25ebyUWYmW/1+1rvdvCqxQuJ3
JjGcJzFL4hfSHZKulnS5pL83ctAtAcB5TPoWSslrpYMbzMrf7vWyOz2dg337wrBh
cPfd8OCDMHs2tLdbz/r3h4YGTtTU8HlFBX8pKeGzcJiPs7PZmpbG2243Lxsp6JR4
TGKuRId0xCdVSLpKksv0DnrEQxSI2dX/svTYOolNSUlsS0lhVzDIwZISuOUWePZZ
2LwZNm6EpUstCCZMgKFDYeBAaG6GxkaO1dRwuKyMzwoL2ZWdzXt+P284HKwwCeEC
iV9LzJAYLL0oKSTJZ6qDS+IhF4hFAC58SrpyjXR8vcRWj4c/pKVxID8fRo6E556D
Q4cAYM8eeP55mDXLAmD4cAuCwYMtaejXjxP19RyuqGB/YSEfZmWxwetlpSkNu8pA
m3TiKum/JGVI+kdJSfFQFcQiAN1ekqa+JfGuw8EHXi+7MzM5UlMDc+bARx9x6m3j
Rnj0UejogDFjLECGD7fk4KabLBAGDOB4QwOHKirYEw7zfno6r7vdLLPZeFriEYnZ
lgzQIC2WlCvJK6th1CPWE8JYBOCiV6Wtb0u853bzYVoan+TmWs5ctAj27YMvvoDt
2+Hpp+HOO2H8eBg16st2880wYoQVEQYN4mhjI38sL2dHXh7r/H5WJCWx2G7nMZuN
X0ncIXGz9ImkiKSAiQLRtnHMSkHM/cJzpeQ3JNbZ7WxJSWFnejqfFhVZK3vhQnj3
XWvlL14MM2bAxIkwerRlY8bAuHEWEOPHw9ix0NoKLS0waBCHGxrYW1LC5lCIlW43
v3U4eNxu5z4DwCSJZGmgpExJV5rewCWxLAUxlwB2Ste+LrHe4WCrz8fOzEw+jUSs
kH7fffDMMzB/PtxzD0yaZDl99GjL2RMmWEnipEkwebL1fjQ6tLTwxcCBfFZby7Zw
mNf8fpZ6PMx3OJhrtzPVagyRJ003MnC1qQguM82hCxMAnIPGzxJp2GsS651O3u/V
i52hEAciEU4OHAhtbdaqnz7dcnDU+WPGWI6eOPG089vaYMoU6+MJEywIbrqJQ83N
7CwvZ21WFs97vSxwu5mblMR0m402iWuleZL+Q1JQ0j+ZKJAA4Fxk/5IuWiK1rZZY
53Kxxe9nZ3Y2+4uLOdrQYIXysWOtMD969Gm977r6uzq/vf00BOPHQ2srR4YMYXdd
Hevz81keCPBkaipznc5TAFRJiyT1NTKQakrC7rHaGIo5ADqlyask3nK5eM/vZ0d2
NvuKivhrdTUMGGAldSNGWBl/a+tXw//ZAGhrsz43bhxHhw/nk+ZmNkYirMjM5Mle
vbjP5WK63c5kiUoLgFLTE7jKVAMJAM5F+Sep+3xpxEqJNS4X7/r9fBAKsbewkEOV
lZy47jq4/noLguHDrUw/CsD48af1/0wAukDwxahR7Lv+ejaWlbEiJ4cFaWn8yuNh
mt3OJIm+0iOSyiRdI+nHZrewRwKAcxMBuj8gVayQWO1wsN7nY2tmJrsLCvhTWRlH
6+utdu/gwZYcjBx5WgK+LgeIgnDrrdDWxtGxY9k7eDDry8tZnpfH44EAsz0e7rDb
mSiRLd1tAMg2XcF/SABwDgEYKnmXSSdX2u2sSU1lc3o6O/Py+LSkhL/W1HCiqcnq
8kWjQGvr6STwzCog6vzbbrOaRe3tHBk3jl2DB7O2vJyleXn8TyDAvR4PHXY746WT
LmmkpGsNAFclADjHewCS7Iul91+QWO3xsCEQ4IOcHPYWFfHnigo+j0aBG26wSsMR
I76aCEZloKvzOzo4OWUKfx49mm0DBrC6rIzFubnMS0vjbpeLdpuNFqsR1Czp55J+
ag6MfN/kAIkq4Bwd+Lz4UWnqUomXnE7W+Hy8l5nJzvx89peUcKi6ms8bG62t4DMh
GDfutAycCcBtt3HkllvYO3w4G+rrWdG3LwtCIe73+bjT6WSyzUa59IKk6ySFJf2b
OTaWKAPPMQS2EdKPn5GOLbXZWJWczLpAgK3Z2XwUDrO/tJSD1dUcaWzkWP/+X04K
W1tPR4KuEEyZwue33MKB1la2DhzI6ooKlhQU8EgwyKzkZG5PSmKsdNwltUuqldRH
kr/LcbFuCQDOHQTdJfWcK83vlFjmcPCa18uGYJCtOTnsLCzkk9JSPquq4lB9PUea
mjg6cCDHz5IYnhw/nmMTJnB47Fj2jxzJtkGDeKOykqVFRczPyuJ+n49fOp202WzU
S29IGi6pMtEKPs+bQZIu/pkUfEw62Cmx3OXiNZ+P9enpbMnJ4cNwmF2RCHvLyzlQ
Xc0f6+s52NTEoQEDOHzDDRweOpS/tLRwcNgwDrS0sGvIELb068fr5eU8V1jIwlCI
h/x+7nG76bDbGS0d+YE0UdL1Rv+jm0E9E5tB56cfYJN0+Shp5HzpZKfEMpeLV7xe
1vbuzcZQiC25uWwLh9kRibCztJRdFRXsrqlhd309Hzc2squpiR1NTbzf0MC6qipW
FhXxbG4uCzIzedjvZ5bHw9SkJCZJJ3Os2n+I0f+8LtvBMZv8xfSBEPOPd0hK7pAe
nC/xtMRSp5MXU1JY7fezJhhkXVYW7+TksDE3l00FBWwqLGRTcTEbIxHWRyK8WVTE
y/n5/C4zk6cyMngsEOBBr5dZbjfTkpKYYrPxn9JySUNl3RX4udkDuMIcCOmWOBBy
/srBSwwEqR3S449KLJTotNv5vcvFCykpvOjzsdLvZ1UgwCvBIKvS01mZns6K9HSe
DwZZ7Pez0OfjEa+Xh1NTmePxMNPpZJrdzhSJWmm1pBZJA0z//6dG+x3mPmHiSNh5
vAnUw2jw5ZJ8rdLMX0vHHpV4wpzneyopiU6nk06Xi063m2fcbha5XMx3OnnE6eRh
l4sHXC7mOJ3c63AwIymJO2w2JknH+0qdkm6S1E/WgdBrTOfvcnN1LHEo9NuwOWRC
sVtSoEC6/k7pgwfMxY55Z9hDEg9IzLHZmG2zMdtu57/tdmbYbNxps9EhMVL6uJfV
7h1imj7lkvIlpZn9/6RY7vzF3cUQE4qTTFPGLym7Tpp6q7RtlsS9xmZJzDR2jznp
e5fEdInbreNeH+Vbyd5QWad+aiQVm5bv1eb7X2Z+XrdYT/7i6W5gdPCD3ezNe41W
hwNSS4P0xAhp3WRpT4d0+HbpyK3S4QnS3huldyqkJT+yTvkMN85vNs4Pm4TvStPv
vywe5wfEy+XQaGloN2H6Skn/avbsCySVGB2vkVQnqaGL1ZnnFeZ1BUbvA5JSTLfv
sni7EhZX8wHOmATS02Tpl0v6Z5O4BST9xADRx9TyeUbb+5jnPzHQ+MzXucw1sEvi
eXJIPE4H6W50+lLTqv2h6dqlyrrpm2Yc3dvY1eb5lZKSTUL5/S56H9djY+J5PlA0
IthMVPieWdVXGEdH7QoTLZxmxff8Ls0LiusZQWa195e1izdN0i8lzZBV5kVthqS7
ZN0AvsFc/bqsy5iYuJ4XFI/OT5I0VtI2SfyNtl3SZCMHdiMFp66BJaqAb29TqFHS
vv+H48+0TyWNMOf/o9VAj3iaEhIvK7+HpLldnWe323E4HLhcLpxOJw6H45Q5nc4v
mcvlwuFwfBMIT5opIZd3yREuTADw7Vn5C6LOSkpKwuVykZKSgs/nw+/34/P58Hq9
eL1efD4fvXr1olevXvj9fvx+P2lpafh8PpKTk78JhGWm0+g+c15QAoDz2wC6I+ok
p9NJSkoKoVCI0tJSioqK6NOnDxkZGQSDQdLT08nIyCAzM5OsrCxCoRChUIjs7Gwy
MjIIBAKkpqZ+EwTzdHpoVHRy2AWJ6+HnL+HLlXQi6nyv10tpaSnTpk1j3rx5zJgx
g5qaGgoKCsjOzqZPnz7k5uaSl5dHQUEB4XCYwsJCwuEweXl5hEIhgsEgXq/36yA4
adrF0XlBMX0xNOaHREnaIAmHw0FKSgrl5eXMnz+fzZs38+abb9Le3k5dXR3hcJj8
/PxTDi8uLiYSidC3b19KSkooKSmhuLiYgoICcnJySE9PJzU1FbvdfjYIdpjuodfs
EdhiWQpiWfuvjSZ7brebUCjEzJkz2b9/P4cOHWLRokXceOONlJaWUlhYeMrxUaeX
lZVRXl5OZWUllZWVlJeXU1JSQlFREbm5uQSDQZKTk7HZbGeDoM1sFKWY5tHFsZoU
xioAF8ka14LD4SA1NZXq6mqWLl3Knj17ePnllxk1ahRlZWUUFRVRXFxMSUkJpaWl
p5xeVVVFTU0NtbW11NXVUVtbS3V1NRUVFUQiEfr06UMgEMDhcJwNgjVGftJMUpgU
q1IQqwDYJR2x2Wy43W78fj8tLS0sX76cVatW0d7eTmVlJUVFRUQiEcrKyqiqqqK6
upra2lrq6+tpaGigsbGR6667jqamJpqammhsbKSuro6qqqpTEPh8vrNBcNREoDOv
iCcAOEf6/++S6NmzJx6Ph0AgQE1NDXPmzKGjo4OGhoZTKz+64qPOr6ur+4rz+/Xr
R3NzM83NzfTr14+Ghgaqq6uJRCJkZGScKg/PgGCi2U0MmKogJodH/h971xoV1Xmu
XyM6AlNGNrNlMs0wEkoIURAlFAKCA2K444DcA4MwZwYGGBhgEJCbd/GGFyDxEu9y
MWo0N63WGBNNYk1t0pzkNO1JTk4bkzZpepKurNWc09PmOT/m29u9B4yaNMaudX48
a+maGRbM87z39/v2P9MOoPTBDzVEBB8fHwQEBGDWrFlIT0+Hw+GA2WwWS8CsrCzk
5uaK7l5KvpT4yspKVFZWwmw2w2w2o6KiAiaTCfn5+UhOTkZoaCi0Wq17UrhLckZQ
L0wO/18A3+1wR3jix0oigq+vL6ZPn46wsDAYDAbk5+cjJydnjPUL5JeUlIxLvtls
hsVigcVigdVqhcVigdlshslkgtFoRFRUlBgKRAFMUJymu3wraKJ/Nk0KiabJs/xZ
aJI+iuZmMOkfBA/3odXNJKV3imULJAt/xCS6S60grmcm+a0vIfWm1aTecpjUW18j
df/vybv670SEqVOnIjAwEDNnzsTcuXNF4oUyLzc3Vxb3peRLibdarbBaraiqqpLB
bDajsLBQTAg1Gs21MKCIBE1tBvkuA6n7Qf5DIP8RkOYIyP/wF+R/+HPyH71K/qO/
Jf+RN8l/+DXyHzpP/oeeIf/9h8h/3yBN272Spu100rTtVpo2WEx+A4uI60shbhPD
xoeJ25hC3IYU4tYzrGPoTSFubQr5LptDU+aqWGdS4f6QixuJ4M6xbu9FPuS3LpXU
m9eSeut5Uvd/QfwgiH8UxD8G4reD+B0gbgNIWQNBANOnT0d4eDjmzp0rEp+RkYGs
rCyZ9ZeWlsJkMo1LflVVFaqrq0XYbDbYbDZYLBYUFRXBYDAgPDwcWq1WFICHZxQ8
+XZ4a3rhpd0Nb93T8A44CaX+DJT601DqT0OhO8VwEgrdcyDtMy5ongJpToA0x0Ga
YyDNUZdwNIdBmlGQZgSkGQZpDjEcBPEHQPx+EL+PYS+I3wPiHwept39Jfr0H6C5/
veQhF1NupjL5Pq1+Ek113Et+vc2k3vw8qbf9t4twF9kKzU4otbvA6fdAG7wf+tCD
0AXvAKmaQcpaCCEgICAAM2fORHx8PNLT05GZmYnMzExkZ2fLrF8gv6KiAmazWUa8
QHhNTY0MVqsVRUVFSExMHCOAqX5x+NHMXtw/ewfCo0/gwXmXEDnvNUQlvoFIw+uY
E/8LRMRdQXjsawiLuYwZ0ZcQGvUqQiJfRvCcCwgMfxH6sBegm/E8tKE/hSbkNPjg
U+CDToIPehZc4NPgAp8CF3gCXOBxcIHHwAcdAx90FHzQEfBBT4APOgwucATE7wbx
gyBV3QCrSoQl1hsmpreb+Amk6vQh9WYLqbdeIH7g7wLpAuF84F7oQw8idM4I5sQe
RWziCSSlPQdDynGQailI5RQFoFKpEBAQgLCwMMTHx8u6e0ajUbR+wfVfj/yamhrU
1taOQVVVFYqLi5GYmIiIiAiZALT3zMPcxC2Yn3YACwvOocT8Lsosv8Ni28eoqPkU
FTWfYrHtjyiv/gRl1j+gxPwRiiquoqD8d1hU9j5yit9DVsFvkLHoHaQY38KC7DeR
lPk6EjOuIDHjCgxpl5GQegkJqa/CkPoKDKkvw5B6EYlpF5CY9hKSMl5CwoKfIiJm
GKTqBiltoB/YrrB1N8ET3DAxvV0t28nk0xpOvht3ku+WL66RvgMq3ePQBu9DcPgQ
ImKOIC7pBFKyTiGn8HmULL4Is+0yrLWXodGvBak6QKoWkLJuXAEI5AsNn6KiojGu
32KxoKqqSkZ8XV0d6urqYLfbYbfbxf9XV1dfVwDkoQd5poK8jCBlGcinFuRjB6ka
bwpKvgXaoOUIDtuI8KgBRMbuQoxhP+KSDiE+eRjxyUOISzyImPg9iIx5DDMi+qAP
Xg4l53CFQKUNpKwCKa0gpRmkLAd5LhiWXF4lLLNM/l4EILr6qcsjyHfTk8T3i9bu
svQ9CAo7hIiYJxCf/BQycs6goPQ8Kqouoa7xdSzp+BW6VryL1es/QGTsLpBqGUjV
CVItEQXg4+MDnU6HsLAwJCQkIDMzEwsXLoTRaERubq7M+qXkV1dXy8i32+2or6+X
wW63w2azoaSkZHwBTAwAKRaApmSBvB4BeVeDvGtASrsb6q8D+9egToJaRrhAerWE
eAtIWQlSln9FnhnniTyK2Laz9CCL4rYJQBbjfVruId9N+4jb9jcp8ZqgvQiJGEZ0
wpNYkHkSuUXnsNh6CbUOF+k9q97D2o0foK//Ywxs/xOyco+DuFUg1XKQqgukanV9
SW59AIPBMKbHL8R+qeuXki8lvqGhQYb6+vobCEAHUiSBpqSDvApB3maQt4URJIXt
G0D6+So3ws2M9AqQd+mX5Jnxc/II2kJEVnaCeQHbdp7OWtRTbosApI9vI9/1NvLd
9DnxAyD+USi1OxnxQ4hOOIbU7FMoKD0Ps+0yHC1vYmnPb7Cq97dY3/chtgx+gsEd
/4Udu/8MS80FELcWxK0GcStcsU7V5rKgcQSwcOFC5ObmiuVfaWnpGOt3J7+hoQEO
hwMOhwONjY1obGyEw+FAQ0MDampqUFpaOr4AJqg+Jo/7fkGTZr5Kkx+6SFMWvEBT
Up8nz/Sz5JnxAnlmv+KC8TJ55b5BXrm/JK+CX7tQ/AF5FV8l79JPybvsM/I2/YW8
F//VRWzlNYKVFSBv05fk/chn5FV4lbxy3yLPtBdIMXeYPO5bQ3TXv7A7C4pZazqZ
iCLZ5VXThDMN37kAROJ9mrTku+E0cVtB/CAUmu3g9I8jcMZBzIk9gqS0Z5FbdA6V
1ZdQ3/xLtHW9gxVr3kfvpqvo2/YHbB38Iwa2/wmDOz+Ds/1NELcexPWCuDUgbiVI
1QNStYNU9bIyMCIiAgaDAUajEXl5eWLnT4j9ZrNZjPvu5AukNzU1iRBEUFtbe30B
EL1ORFuJaBURNTDrKyKifCIqkKCQoYgRVcLe+wg7mVTGSCxnJ5EXs+NpFWyjWfh3
OXvfI+zn5LH7CtNYSzpGcpqJZ6Xg5O+8ChAtf+ryGPLdeJW4bSB+EErtDmiC9iB0
zjBiE48jI+c0ShZfQLX953C2v43O5f+OFWvex9qNH2Bd34fYsPkjrO/7EOv6PkSx
6SQUfB9I1ctEwLyAahmrBBrGCCApKQk5OTmyoY+Q+VssFtH119XVob6+XrT4pqYm
NDc3yyCIoLa2FmVlZUhKShpPAD9j5LcwclKZ+010O3mURETzmXUms/c8TK7H1aYy
AtMZMtg9BFluyGSvpbHPJbNp5Fx2oimc7ScID7sUOpITv7NGkNzlr8wm3w1/kZKv
Dd6LsKhRGFKehrHgLEzml1HTcAXNbW+hvfvX6Fn1HlaseR/LV7+PZav/A10r3kVy
2hCz8CWuel/VyqxeCAPLWSXgkAlg9uzZmD9/vuj6hfJPsH6r1SqzfsHyBfKdTiec
TidaWlrQ0tIiiqCuru7rBHCBiFrZvUFZ7DzBbDYiFhDOID2JNJvtEkQy8qLYPOHH
bLoYQ0QPuSGGvRbFPiecaBKOsQmnmW75sXbfPsv3XZFD3Ib/cbn9ASi12xn5I0hY
8BSyFp1BacVFWGtd8d7Z/jbaut5Ba+ev4Gx/G02tbyExZYQleAL5TS43L2bBLa74
z61klUAjpK3gyMhIzJ8/H3l5eeKMv6SkZIz1X4/8lpYWLFmyRITT6URzczPsdvvX
CeAcEdUyd5zAGjABjAx3/JDhHgYdQwCDcEppOkOgG6ZL3qNjP+NuFuc5lux5f5NH
3H67Y9lTOw3ErfuSuD4Q38/I34MZkcOISzqBzNwzKDK9iMrqS7DVX4G96Q0Rtvor
yF70LHPrbuQrBfKlpY8NpHSClO0yAdx7772IjIxEcnIy8vPzZSPfyspKmfULrl8g
X0p8a2uriJaWFjidTtjtdphMpusJ4DSL15nMwjm3YdDXYcoN4DkOpK8r3IZJY4ZA
UvzDBeDq6DXryXfVJ8RtAnFbodAMgtPvQlDYAUTGHUFyxrMwFpxFacVFVFRdgtn2
M1hqLqOi6hLKKl9GSPijzKV3s7gukG8fh/wqSQlUJXYCBQE8+OCDePjhh8cMfoTk
T4j9gvVLyW9tbUVbW5sMgheor6//OgH8hCVwacwdS4+Qu8PjO8BECenjEn8zA6Fv
4/pfciVom0F8P1S67dCF7MWMyCHEJj6JNOMpGAvOosj0IorLX0LJ4gsoLDuPjJxT
LJ4LWX0Hi/WC5deO0/Aws7KoHOSV/W80UfsKEcHPzw/BwcGIiopCSkoKCgoKxG0f
k8kkun9363c6nTLy29vbZRC8wA0EcIpl5ClsVdz7+9oHcJuqejCvMPlmDrl+s4VM
3x6bi8SNIG4LFJoBcPqd0Ifuw5zYw4hLOo7U7FPIWnQGxoKzMBacRdaiM4hNfEKS
0QuNnTZXf1/VICHfvdO1GOSV9xF5BO9kN3k8R0RQq9W47777EBMTg7S0NBQWFsoW
PgT3P571S8lfunSpDIIXaGhouOMFIJLPrdaSur+C1IObSD2whfx6cyXnGq8rglvP
+r3y/cin+1MXkS73r9QOQhO0C8HhBxAePYr45BNIzngWKVknRUTGjYC4dW41fQdz
/Q7m9m1jrd77kb+SIu4ZogkNbBNoMREdE84C3H///XjooYeQnp4utn6F+t9qtYrJ
n7v1S8nv6OiQob29XRRAeXn5HSUAWfVFNIm43nRS958ifvvfiN/FJoO7Qfw2kKpj
MzvTeN2LLr5Bs6e1m7gVrEFzTQB84E4EztiHsKhhRCccRVzScRhSnoYh5SlExo1C
wW9iAnDr6qmaWdyvkcR6idVP1K5j17WZ2RduJKIhIsK0adPwwAMPIC4uDhkZGWLr
V2j/CvFfcP9S65eS39nZKcPSpUvR2toKh8NxpwpgIvltMJB68FXid4D4XVBo9kKl
2w9dyAj0oSOu8bDvyv+lSRGxrALhJCIQ84Jbc/2TH1SQT9vviVvJyNwE4rbIBDAj
cggRMaOITjiKGMMxxBiOupo63EY3AXRJrL/WjfxykGfaFaJJS1idXcpq7URWE+8k
Img0GnEbKCsrCyUlJeKGb2VlpSz+NzY2yqxfSn5XV5cMHR0daGtrEwUgdAJlG0G3
UQCypM63U0fqgcPEb//KZfF7oNLthz50FOHRx5GUdhr60EEWYhtAinkOlqTqx7vc
+tbKPh9HNqk6XS5c9ADXBKAL2YPg8IMIixpBePQoIuMOg9cPQsFvlgtAtZzV8y0s
8bPJyZ9iOE+uJ3PUsNZpOmuEhLA/pI+IcPfdd4uj4KysLLH3L4x+pfG/qalJZv1S
8ru7u2W4kwQgc/nqbZWkfvRzgXildj80QUMInXMUcUknsaj4InRByyS5lAnk8aMm
yfX2Y46z3dphDJ+mPaTqGCMAhWYAKt1j0ATtgj50L0IiDiI8ehhzYkeh1PS7KgVO
GgIEAThZ7K+SkJ94jvXWK1kvfQHrmAUzVzaNiDYIApg1axbmzZsHo9GIsrIy2daP
zWYT47/g/qXWLyW/p6cHPT096O7uRmdn5xgBjNkJvH0CcG1PqfsGXJ3WPVBo9oHT
H0LgjCcQEXMCSWlnkLnoFCO+mhlTBcg771M2g5h3vfOMt3ZPv0/jf7oEIOQAG0Bc
HxR8v8QL7EZIxAGERQ2B06jjeZIAABrLSURBVA9CwW9jAuhjff01LAR0XtvuUVqY
20//V0a+md3LP5+1PQNYj9uHtTvXERG0Wq1sEFRWVibu91ssFlkC2NzcLHP/UusX
yBfQ2dmJ9vZ2NDY2fq8CIKIJ9INyb1L3H3HtRO4C8Y9DEzyKkDnHEG14DqnGc4hP
Pigh38pKZhNI8eNj7HdMZK3pbyYAIppAnnk/JFXDV6RaygSwRhSAkAiqdI9BF7Ib
weH7ERY1BJXuUSj4fhC3lYlgIxPOKpYDtLDkrxLkXfBnmuDVzW7pzGNDlNmsFcqx
L9iTxbBeIoJOpxMFkJOTIyZ/wvhXSACF+C91/1Lyly1bJkNXV9f3KoBrM5aue0g9
eFlw+cTvg1K7H3zgIcQl/wQZuecRFLpW4vIl20H/x9y5x0VVrnv88ToCsx0dHVmu
7dqzp2maM2c2xIEmZmPMETYoRJoyEXLVg3FRYAa8cDFv4K284C1Fw1QSixKL1PKS
lJdMtMhE06gszczM7fHstJLMfvuP9S5YDAOClzrz+ax/+HgZ1vN9n/e5P57RZ4i6
5LDs5GBWJaRhrmG3DtsAze5fylBSOVnIdhZT5Qtk18AKqLWrwRvKYPQrh9a0Diph
tWiNNkFQwqCZy9xAVtyhHAvqadnMfPwE2ZTOv7IkR09ZRE3hCkBISEgTAFKTR1pa
WisDMD8/v8Xplwu/qKgIRUVFrQBITk5uqgr+PQBo9usXPkL9S7+RBK/gNkIlVIA3
VMLgW4Xg8J3s3clP/jjxXXqNvkZdNbOJaDyrE7CwXEVf10bWjn8hr5RUUjqaM3Tq
ObJrYAkUmuVQa0shGNfC6FcOTl8GlbAGCm6VGwieZbGAp8W4vlfiT0TdJzGLf4Rs
LHs/9mKl4UwdAkDKAGZmZrYwAOXqX376JeFLzx8BQIvup/6l2aR54TppykFcBRT8
Jqh1ldCaq2AKqIbBd62L8NNlcZP4RuquX8HeZQLTpCam/jvvBjbV7nuNnUrKLFFt
N3kC82R2wDIXAF6ASiiDglvDAFgJ0jwng+AZ5g3kgzyerJdt5Ah13cfX9GXbASA6
OrrJ/btTAGbMmIHCwkLk5OQ0AeDj4wOO4+StYXcNgGYXb3Zf6r+2ShI8cS9BKVSC
M1RB71sNX+s26M0r2xd+D+MqFjdJkqWpBRYMatUn0PE5PF6Jc0g5nuXpp8quATEe
oNAsg0pYCcFYBqPfi+D066ES1kLBlUHBlbF6/1IGwnIZBDNBvR6tIaKn2H0VxFS/
2vULuwPA39+/BQBSw0d6enorF7CgoKDF/S8XfnFxMYqLi1sBkJSUBJvNdk8AaNEc
o1kRSv03nBUFXwkF/wrUuioIpmqYArYjIHgnBMMCWdAswyViOvoqdb9vmSxuIrnO
BqZJ3S636ug07p7kFT+HlGli4EZV0JyfV88HqRdCoVkCFS8CYPAtB2/YALV2PVTC
Oii4tVBwa0Ga58XuHs0qdiWUiBB5xu9ixD7GCh54Zq22yGS1BUBoaGi7AMg9AAkA
+emXhC89vwcAzZVUkzzJe8Ni4ip+FbuCNkMpbIFGXw2973b4WnciKLQGKn5aG8If
C/K0f0ddB8xlWjRBtt38lrWBnQAg9mlSjhMLNVR54v2tLpIZgyVQ8SvAG56HwXcD
eEM5NLpyqLXlUPIboODWQ8GxViZNGWv1Wil6B70za9kXj2SW/0Dm7v2/ACA4OPiu
AdCiM0qzOpS8NzWILWFVUPCvQaWthmDaDlPALlhsNbDYtrFoaVvCH/4pdfEoZFXB
UtAsiAXNpNrANrebdxwAzyfSRf8yk10DBTJjcD5IvQhKbik4XSl05nUQjBXg9Buh
0VVArd0IlbARSv5FKDipv02CYTWo3zMXWWXNUFZcwTF35Q8FwOl0IjExEcHBwTCb
zdBoNHcDgK6knutN3pvWE/fqTbE3sBpKYSs4w5sw+O2GX9A7GBy2H76BFbJEmVz4
UtAs7CBRl1w24jaOHaC/M5ePk2UCu9x2Orgp6+QxYhgpx7IvkN1sDKpmMQiehUJT
ArXwHLSmMujMFeANm8DpN4HTvwyNvhJq3ctQCpug4DeJRo5mI2t4XAvyCCtihY8B
LOLX2/XOag8Au93eVAN4NwAoKCiA0+lEfHw8Bg8efFsAuBRmdKNeQT1pQIWDvCsv
i42hb0AhbINavwNan93wsb4La+gBhEbVQmdawlLkcuGzcLlX4q+ksL4mi5jGsEJR
f3bncx1dcNHxUGRP/0GkHHtTpG88a3HKEwM6LDCk0CyAil8KXi9qAa2pEoKxEoLp
VQimKvDGKmj0VVBpN0MpSN2wrCNWs+xTlukLZJG/Pq6rWToLgDsv4FZGYHFxMaZP
n46CggI4HI7bBqDVYIsBL48k7y0niXsDxG+DQngLKt1OCOY9MFn2wjLkIIZEHkZI
5F5ZTaS8PkIK78b9RD3+Yy0TfiqLmIYyzTmI+fodrg3sTH+fF3klnRQBSBXJVE1k
V4EEwVwouUVQC8shGNZAZxaFr/d9DXrfauh83oDWvBW8cSs0+q1QCtWsTbpabJPu
O7uahS3dqrDOXgG3cgPb8gIkALKzsxEXF4egoCCYTKYOAdAqX+9dHkner9eKreFv
gfgdUGp3gzfVwOC/D/7BB2GLOILI6KOwBFeKB0vpKnxm6XvGfE/dBs5lKj+BBXls
LMwrz/Z17+jUss4tZ/KKXy7aAeNkV8EkFh2cDlIVQaGZByW3CBqtCIHB7zUY/Kph
trwJs2UHzJZdMFvehjFgD3jTTqj1Yg+9+HK2g/qXbCbqFuAygq2bbBlEpwBwOBy3
FQjKz89HdnY2Ro8eDavV2lEAeja9L65qJA3ceoj4N0H8ThC/G0rtHnDGd2HwPwD/
4FrYIuoQMeoYRsTWg9fPdzH2xrc09jxGnGKh8nSW4IlgqXEpyNNHOvl3fUSMtLWb
PB8PFu0ASQukudUECs08qPjF0GiXQ+9TCbNlG/yCdsJiq4E1ZC+Cwt6DZch78A06
AGPAfnDGd6HU1oD4PSB+N8h788ekjBvF4gHSlG5P9nhJyaCOAnCrULArANOmTUNe
Xh6ysrIQGxsLq9UKo9HoDoBEWVFoX1KOHkhcVS4N3N4gCv1tEF8DpfZdcMb9MPi/
D//gI7BFHEVk9AnYExswZNib7BA53Rt7Xsm/Ua8he1iYPF2WIX2YWfrSFlOP2xlV
1+mt3eSVcLylFkhnEEg2wTSmCeZCyS2EWlgGc8AbsNjexuCwvQiNOoTwER8gbHgd
woYfxeDwOvgHfwC93yFoDAeg0O4D8XtBA/fcIO9XX6fe2ZGMcDWjXEXili8MGjTI
LQBSJLAzySB3AGRmZiI2NhaBgYGtZwSJACQRURSpJo0lrrqCBu64KkL8DhTCXqh0
+8GbDsIYcBgBtjoMiaxHlP0UYpK+QOyYBmgNC9pQ+dJ9H/8z9fBZz4T/FDv54cxQ
lraZ/elOZhR2ems3eURmtNYC6SK5KifzDqaCVDMZBAug4ksQELwbtmH7ETHyCEbF
1SMm6SSeTP4M9sTPEWVvQMhjJ+Fv+xg6vw+gNtRCoT0IEt4DCft+I27bMeI2zaY+
jkdYkGiJBICfn5/beoCnnnrKbUVQW/UA8qewsBCTJk1CRkYGnnjiCTz00EO4//77
0bdv32YAFA8fpn5LdhC3/SLx74jQCvug1B2Axvg+tL6HYbbWwRpWj7ARpzAi9nOM
HnsGY9LPwRZezU59jqz5RX7fS+Vw3vNZQmes7L5/kGnGAbKB1bc9pbSzAPQiokHk
FXe0WQu4QNBkF7S8EpTcIgSF1iAq+kPEJJ3AmPTTSHecR7rjAtKyLyI5/VtEJ55F
2IjPYQk5CUPAMXCmOih1R0BCLUg4BBIOggbVnCPNik9JaUf/P4fibz6BsNlsePzx
x5GQkNBiGIRrUeitagKlkrCCggLk5uYiLS0Ndrsd/v4BEHTB8NSMBvWbCfKuBgn7
QMIBkPAeFNqDUBtqwZuPwGj5CP62etgiTyHS/gXsSWeQlHYe4zIvICaxjh0QeeeT
a3BnDMhj6GGiHvlsMHUy846CmIvH380Flp1d0NiTiDTU8+Fh5JXU2BKCdFlPexYL
GTdrA1LPhkIzH9aQHXgy+QRSJnyFiYWXMLXoKqYW/YT8mT8hp+Aq0p1XEJdyEcNj
z8EWeRp+wZ9C738cnOkoVPo6KLQfgoQj7DkMEmrRXbsHqgc2Y9CD6/HAw8/hwUcW
wPqP2QiNmoFHRz2N6Nh8xCdPRtL/5CF9/CRkTJiMzOx8ZGUXwJFTCIezENnOp5E2
YRYSUuYhKmYhgoYtxwOBZehrrERXYY8In3CQgVgLpe4w1IYjEHzqYLQcg1/wCQRH
NCAi+kuMij+LxNQLSMm8iAkTLyM162sYfJbJ7vrsNlR+ws/U03+jbGfxEyw4ZpV5
Rn3YQexxN+YT385yht5ExJHHY0XNV4GrJsiQaYPc5tAxA8EcUIGUCV9iYuElzFnQ
iBVrgNXrgaWlwPwSYPpcYOLURqQ7ryJ+3GUMj72AkMfOwhLyBczWBuj8PgFvPg61
4RhU+o+h0B6FQvsRSKiTPR+y5wMZMHJwDjcB1PxIP2v55xXaD6DU1UFt+Ai8+Sh0
fvUwWz+BJaQBQ6JOI9J+Fvak80hK+x6p2ZeRNflfyC28ipyCKwgMfpH1PeS6dD25
hnSjz1LXAfNYv+FYlhYPZs2lksr36mjX770AQL6rtw8R/ZU87a+0D8F4RrqDqb08
phFmgNTFGDX6fRTN/xHPbwC27QT2HgR21ACvVANl5UDJSmD2AiB/JpA9pRHjsq4h
btwVjIy/hGHR38IWdQ6BYV/Bz3Ya5qDPYbA0QOf/KQTfk+B9ToIzfwKN6QTUxhNQ
G49DZahvepR66TkGpf4Y+/kxqI310JjqwZmPQ/A5Ab3/SZgCT8Ev+DNYw05jSNQZ
RNq/waj4C4hLuYSUzCsYn/sDnPk/Ycr06ygsakT+zGuwhb3qRt27nvoUkFfSr9Tr
v3exvgcpnj+cVfH8JwuK9ZNtLL+ri6tuJ28t2QIDiLoayNO+q30IXEHIZS+mEKSa
BhU/DxmOk3jldeDIUeD898DlH4Az54G6emDXu8BLVaKGKFkJzFkITJsLTJ4OZOfd
QHrOdYyd8CPiU39AzJgrGBl/GVFPfo8I+0WEjbyAkOHfwhZ1HoMjziFo2DlYw7+G
NfxrBIadRWDYWVhCz8ISegaBYWdhDT+LwRFfwxZ1DqEjziPCfgHDR1+EPfmfiEu5
gjEZ/0K680dkTf4ZE6f+gvyZNzFtDjBrPgN1xhUEhVTIOpzl6t7dqY+5SN11S5nK
T2FWfiS7702u28rvxTj6O9nT01t0z7r4kOfILaQcw4oR5d6BqzYYL7sanDKtIMIw
LuMd7K+9jmuNaPW5+L/AsZNAzQFgyzagvBJYswFYtgZY9BwwrwQoela8PgqLgSkz
gIlPAzmFQHbeb8icfBPjJ95ARu4NpOf8gjRnI9KcjUh1NCLVcR2pjutIc15HRm4j
Jkz6Bdl5N5A79TdMng4UzEKToOcuEq+pBcuAhcuBRSuArIkN0JsXy068002Tq+up
D6kh6j5FduofY9W7/8XKtziXhtN7Mon8TurUFcwN+TMRmahX2GLySvqlGQJXbeAO
hEwGQw57cVNAqgJotEWY+2wNzp37J9r63ADw3WXg1Gng8FERjG27gaptwEtbREBe
qACeLwdK1wMr1wIrykRglq4GlpQCJatErbJY9pSsFH++tBRYvgZ4rgxYWQasegEo
XSdqotJ1wLySyxgRs5V5O+0JvlXu/hvq9pdlzLcfz079MFnfA+866fNeLqK4k/o1
6SpQsySED/Uwp5BX7JfildAZEOQwOGVATAap8hEaUYKVq3bjww9P4/r1Rtzq0wjg
yjXg20vAV98ADV8CxxuAj04ARz4GDtUB7x0B9tcCe98H3t4nXjVv7QG27wa27hSf
N3YAr20HqraKdsni5d8iNmm7yxSTXNnYt7YEzyx8RdDrRF2yWVAnjhl60qk3uIZ0
f48tJHfasNCNGYW9mzQB9RxMvYauJa+En9sGwZ2N4AqDBISDAZErg2IKSJWP+KRS
PLNgK6q21KK29jN8deYirl77GZ353ARwrRG49H/Aue9EWI6eAPYd+gXPb/gKWbl7
4BtQwk56XrNF3+K0Z7oRfGpzKNcjoo669pnJLPxktqo+lEX0pHBuP9mAid9t/czd
2tbdi2WiePYLWagbF0Mej74lxgvcgeBOK7QHQ6ZseKIEhtMFjklMQBIkU5jQ8kCq
fAj66fANmIMg2zMICV+EsMglCI9aipDwJbAMXgheN4sJOp/9nSns35rI/h+HyyDH
dgSvHAPyHHWauusWs4COZORFsVP/IEt4cbIRL/fM2LvXU8K6MnKVLHlzHytO+Ad1
HZBMHkNfJ6/4H1oaih2BwR0QbUGR5X5Kp8ohg8Upg6a9x8mE7XAzvTOzjamd4+Rd
zeepx9/KiMjBjDzp1EtBHTOr1G2RxPkjlk7dzQZGaZvHn5g6+wuLXj0kEq8YToq/
LyHPUcfIK+lms1ZoSzPIgUhvY/LmhHbAcIWjPVBuNarVVeiuY2uk6SX2b6iH7zrm
1qWybOHjrMXNyrKG98nu+n+3d3U/bZZR/PD90ZaOd9S1bK/daBm8bRml3StdQzug
n7SlhVI6R9kgbMw4zUw0Mf4B88qYzKhXZkbjLvTCZEavTHblpYnGGI270MQ7r7zy
QqPu58XO0z28FPbFGJ29OCEBQoDze85znvPx++1YRe+xK4ZsGoS43brlpyINcqIT
JaIcNSvPUUf4Q+oufE+m5b9uR4bVGtHhXkGxFS3rxbvYCzXsooGb9/ktKFsFXevZ
W9SV+4Xaht4nolf5nj/HbdsMz+hpUkHHsptJ3q4qhtSQeOnkMHeAy5kaJz4RbmvO
EnU8S23HLlNn4jp1F3/aDIhaoJCBIYPDCJCtgHIvtg1Hr3kVZCr/TR0TP1Dz/mss
NX9BOvFJJnEM8JJLv7Tf2HG/si51qRkkgaGdo4GVN3wPcvIzzInQMxsB0bJIre7X
qCN8lbqSN6i7eJNMpzl/EMCoBQ4jQGoBZSu7UONz5wy8vSsgUxnUEQa19IOo6Uci
usqr6i8R0Txn9se5hDsgETjKzJ17Slput/QCRDQQ14LCUeEQ/6M0XgMPcYac5MpY
kXl2l6nJfJFaBy5Te+A9ah+7Se06Ws0xtPXk0dqziGbLEu6ARAbKag3QbGfie1fQ
0nMaXUoOnT06OroPoaW1VR4I+Y6IrrB83Apfb4Kr1yGF+24+BHsi5O8FyZhmqbXc
xZHBxmBwc4YcYDBEOYFKc4OkxAWUz4RgxMGDB+F2u+Hz+RAIBDHqH4fv2Al4fBMY
8pzEUc80BrU43MMpDGppDAxlMDCUhWs4B9dwDm5tli2PQc8sPMcyGA0kEDw+gbGx
MQwODqK3txcmkwmtGwHwNXMFX+KCjpf/BquU3O15ZfHHqRYmRwYzZ8V9/C5WOWdw
8R3q4cnXIAPjQyEbe/jwYWiaBl3XqwrhExMTiEQiiEQiGxTDY7EYEokEkskkUqkU
0ul0VWksk8kgk8kgm80ilUphamoKoVAIHo8HiqLAYrGgra1NBsBXRPQKj4VF+XdW
7kbL1tAN3GppYjPBYadECGHicKowQK4ImjiXywW/349wOIxYLIZ4PF79KJydTqer
DhaSMkJZZH5+vqoxUCwWUSqVUCgUMDMzg5MnT2J0dBR9fX0wm81ob2+XAfAl07jP
cugXz7rmejj5e0I4sgatacsm/cA7oBDJ5D4iel1mCpUBIJ9soSImO1sIR8us4sKW
lpZQqVRQLpeRz+cRi8UwNjaGAwcOwGKxGAHwhUQV65Wed3Xj/LrTDpYaUC8K2Tg5
AkxNTVUFo2dnZ1EoFDA/P49SqbTB4ZVKpaZ28NraGlZXV1GpVLCwsIBkMolAIAC7
3Y7e3l4jAK5xGzfJL5rHRhX7fwKASB5jQjxaSMeGQiFMTk4imUwik8kgn89jbm4O
CwsLKJVKG1TDheNlzeDz589jfX0da2trWF5eRrFYRDweh8/ng8PhQE9PjxEAb/AL
Jcb9j+4GAB49AETzaT8R/SGYwrxeL3RdRyQSQTwer971RgURmUdYJpMS0rHr6+vV
CDA3N4fJyUm43W44HA5YrVbZ+X9yuXeRV9mONgCwezlDC4fb6+IlYLwGUqkUstls
NQJspRwuK4YL1fAzZ86gXC5jZmYGuq7jyJEjsNvtRuXwb7jcW+DZvYGGevju1hG6
eFYeIgoMDQ0hGAxWQZBIJDaBQL4G5BxgZWUFZ8+exdLSEsrlMnK5HKLRKFwuF1RV
haIoMjkUiOhtKQHUeTGz83738hoAeHAQiNbzt0QEs9kMp9MJr9eLQCCAcDiMaDSK
eDyOdDpd1RMsFosbXgEiMTx16hTK5TKKxSKy2Syi0Si8Xi+cTidsNpvx9P/Kdf8S
CzcJBs676vQ2ALBzIGjjKJAnon9EVVBVVWiaBr/fD13Xq0CYnp5GIpGoPhGFxLys
Np5OpzE9PV1dBVdVtZbz/+UaxCoPdoxzsapvOxqWBgAezXOwgxtLbwkHmc1m9Pf3
w+VyQdM0jIyMwO/3IxgMQtd1jI+PY3x8HKFQaJMFg0GMjIzA6XTCbrdDURSj88FC
FZe41SsImMX07p5r9DzJABBl5D5OwD6VHWW1WmGz2WC326GqKlRVhdPp3NZsNhsU
RYHVaoXZbDbe+UInUKxo53i+wbkTC5oNADz4QKqFu4pDRPQBEd0yOO2+rIbTwT/z
Bp/8FW77hjn0PyWNbzfV5f+yTgFgnEN08Fv8ZSL67WFAYLDfuecvNncKPOih7cRu
fgMAOzeHuI+HL3w8lPEOEf38gBHhFmf6n0hDnUvs/Ah3JuW2b3O9nv66BoChmSRG
z1ROzMI8j3eOiN4koo84T/icmzhGu05EHxPRuzzXt84nvsLVvjSffO/D8PE0APBo
I4HYTXDwYMkozw5M8urVLBePFvgNv8gfZSvyHZ9jp09Kqtxu/tkPzMfTAMCjzwnE
gEkPvxDElJGPK3YnOIxHefRMtiif8jDP9Y1KMjVirq9TUu1squfQ/yQCoEnaXBZT
Rr38SlA5ax/k1q3Gd7lsGn/tKD8tn5Y090zGUe4nwflPDAC2FF647bRuztZ7eaKo
j81Ww/r4tO+TqOna71eRu57sP7MvUyWLcl38AAAAAElFTkSuQmCC
}


;notes.png

img1: load 64#{
iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAYAAADDPmHLAAAABmJLR0QA/wD/AP+g
vaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42uyaeXSU9b3GH7IAmUlZ
XKlLBTnurbdWrb31WL3eWlGoiBDUWrdrPVbqbW3t1es9V2qtLGETVGRJSAiQZSbL
TCaLWWcmQAQNSFgCksxklsxMMvuS2Zf3uX/kDW4gtEqSW3nPec6cOTlzJvM+n+/v
+/y+7w8kcU7fXp27CWfz5gLjPqM0Uemiht+PAzDuHAD/vOYPm54BIFPUePF9+mhD
8M9ccServlMp/TTKOIWGzfysJtYuw7SP83C9rhi3G8swx1aJJx1KvOhW4XVfI3IH
yvFHAN8BkCV+Jh1A2jkAvjnjT2XsyQzM/EJlntCiucje+x4u69mBG2yV+JlTiQe9
NXhqsB5/CDXg9XAj3onVQx5rRk2sGbsSLTicbIUl2QpzohWmhBrGhBqGuAaGuBb6
eBt08TbofNVQArgYwBQAEvG700djFRiJ6vuqqkz/O3Qq88YDmABgolhREgBSscIm
AZgMYErOXZi25WVc37Iad+zbhNldW/FrfQlesJTjNbsCq72VKPbVoiL4PprDjdgX
a0ZPvAXWeAss8VaYY0MyRlthjKphjKhhiqhhCqvRF9bAElbDGlLDFtJgIKiGPaiG
I6iGa1ANd1Az3hPUSnxBrSQw2AyLoxIfArgRwBUALhD/3/Gj0Qq+yXCT9hXL5cmW
yvGfMe+LGjbzi5IAkBS+gmktq3H9gTzcri/B7N5SPNEnx4t2BV73yLHJW4OtvjpU
BxuwO9KErlgz+uItsMdbYY+1whFrhSOqhjOqhiuqhjuigTuihjeihi+sgS+sRiCs
wWBIg2BIjXBIg2hIg1hQjXhQnZkMarOTwZ1Tk6H2S1LhD2emIp03CfHuuwVh4GEy
+ALJv5HMI1lH8hBJNxmx0KO+NuFpgMNZhV4A9wD4IYDvAZgq/r60MQ3AF0zPEM0a
NiZbrLgp4g86D8D5IuEXiZom6hIAl07Nxvf+8iRuKflfzFG/hac78/FK9w7kmmTY
ZK1AubMajd4a7A3U43CoAcZoE+zxFvgTrRiMtyIYVyMYVyMcUyMS0yAa0yIW0yAe
1SAR1SAZ1SAZ0SAZ0SIZ1iIZ1iAVOqHMVFCTmQq2ZadCuy4QQh9cJoQ7rhGih24R
Evp7SefjZPRPJHNJbifZSvI4ySD/7isVo3vvgoSzAUl7HTzearilE/EYgJ8BuEq8
N9LRaANnanoagPSmxbiwZz2uPL4dPzy2DXcdLsDsA3nIOZCHZw4V4KWurVjSU4wN
ZjlktkrUDSjQ5qrGAW8NjvvrYBp8H45QA/yRJoTjLYgnWpEaVlwtSoNUTINUTPup
ohqkolqkIloIkTYIEe2QwieUKYTbsoTQzklCuP1Chvdczsj+6xnr+gmTpl+S3v8g
U6+SXEtSRnI3SSPJJL/5K0Syh+QukuUk3yUDv6Oz7YpUfz2SVhUCLgV8P7kO/wNg
DoAfALhUbFkjHgZP+Yf+fEz1bccVg/W4wV+Hf7VX4R5PBUriTXDEW+FyliIaUyCW
aEXyC0YKcTWEmAZCTHyNDokRDRjRDr2GNUPmhTQQQloIQS2EoAZCUJMpBLVZQrBt
khBq/64Q+vBKIfLxjYwdu4Mp63wy8DzJv5DcQFJJsoOknWfn8pDsItlMcgfJNWTs
VdLzHJN9j5xCD39e5oWk62m6P7guZatD0qJC0KGE94l78BaAeQBuEtvAZHFVHX0A
AIxzy/HXRBOMKS0MCTUMsRYYfFVwencgEWlC3F6MVPR9CPGdEKI7IUTaxglh7Tgh
3JYmhLRpQkibPmTkzqlCaPdFDO2dzsj+Gxg9/GMm9PeSjl+R4d+TXEJyC8kmkkdI
+s+SmTaS+8W+XEByORn+M+l8+syMPK0WfirzZ5VDOp6kb9/NgrUWKYsKoQEFvK8/
ge0AHgZwK4AZYuscfQCGl3zDBjzl24aeRAu6ojtxLKjGJ3Yl+pzbEB8sR9zdcAcH
lZcz1n4nOfAoGfszyVUkS0hqSepIRs+CkTGSBpJ7SCpIbiT5Bhn4PTnw+BkYuPDL
Mp9N5TBlfZjBrjsFa11myqJCuF8B75aXUAvgVwBuAzBTzEyZYwWA9P0rcLdrK3oj
cnyS0i1mItFBv0PLgZJL6FfMpKX0IrqKz2Ok/moOts4m3R//A2YGxGClJVlGch2Z
fI30LWLqZGaZ/z8qh0lzDqP6OYKtPitlUSFqU8Dz/lK0A3gcwE8BXCOG5UwA6aMN
QBqAjC2LMLM/H+ZQKXo8cvQM7HxNHwqFaC2eSX/VlbSUXcb+rekMVmTTXz+VnobJ
pP1tko0ktw2tBtFXSPezo1B1Yw+CVP/DtDVMSllUiFmV8Hy8AUcBPAXgDgDXAbhw
eCo4JlYAABLzRvSEitHjLoXOLofetusuZ3/1dHrLJ9FSlk1T/jj6SzPoU0rpqpHS
o776W2bsmQNA91Psb7owZa1FvE8BT18pBgD8BsC/Afi+OBkcMwCkAZho2ojGwA7o
PGXQ22XotaguHbDXzBC8ZRL2l0loLkijtzidPoWULpWUzsbLvoXVfYYAeJ+lUzsj
Za1F0qyAx6OEb8Y0/EkcCP0LgO+Kc5X0MbELADBBvx4b/duh95ZC5yxHr0VxntXZ
8v2UpyyLTpmEpqJMural0V8lobtaQkfd+UwYF5wz/GQAeJ6lZ+8PUrZapEwKeJxD
W8EVAGYBuFmcBUwAkDEm5gAAMnvexcvuIhj8pdC5yqHvK8/qc+++NekqzaJbJqF5
x3jat45joCKLnmopnbWTGTny7+dWgZMB4HyKgwdvF2y1SBmr4LUr4Ml9FkXiMOg2
AJeLI/CxA8DhNVjg3ApjoBQ6lxx6izzT5Gq/LeLYkUWvXEJr2URaC8YxIJ9Ab7WU
zhoJAx/eMuYAiBkWMNq7gHFjzujtBPoWMqq7X7DVZaaMSvj7FfBULEajOAy6HcD0
MQdA2xv4UX8+zIMl0Lnl0FtlMDp23uq3bcuiTyZhv1xCw+Zx9JeOPxEEvdprxhQA
CVMOA8cfYt++B+k+Mo+hnvmM6BcwYcoZ8a1gqv9R2uqzUyYlBm0KuPe+jQPiMOgu
cRYgGUsAZLxwH6b2bYJ5cDv0Hhl0NhkMA803uCzFUwSvTEJ7uYS9een0FGfQr5TS
rZLS3XT5mAIg1DOf+xrmUlH8Ehvlj7Bv31w6Dz3IwPGHGNbNHyEQcsQg+AztLdNS
JiWCFiXcpmJYADwmBsGrh88GjBkAAEzsfQ/7/duh98qg65eht79+xoCl4lLBU5ZF
Z7mEPVsy6NqezoBCSo9KStf7FzBhnDcmIIj2LmBP+y9ZWfIa33vvXa7MXcxNa59g
a/ksdu+azYHOuSPUGkQA/L+lc+fMlLka4T4F3B4lfNdejhcA3C/OAr4z1gCYcPxt
VHq3odcvQ89AGfQ21cUWi+qqlKt0CIDuwvG0b03jYJWUXpWUrjopw4fvHnUAIvoF
tOx/gBVFz7Bgy3rK5XKuXLmSy5a+yVVLF7Fk4xweaJpF6/4H6D06bwRAyCG9z9G3
72bBXI2oqQpuhwLe/5yLFQAeEGcBk4cPhowFANIBTDi4GqvcRTD4y6BzyKCzVk42
W5tuSjmKs+iWS9hTNJHWgjQGKyT0qaR010kZ+PDmUQUgbszhYPd81pXM49Ytq1lZ
WcmOjg7m5eVx1apVXL58GZcteZUb1vyamop7qWufTfeRBxnsns9o79nKB0MPhcKf
/Fyw1GbGjVVw25Vw5/0RJQDmi08Fzx/pgyGnA2D8B0vwO2fh0E7AUQadtVxi7Gu5
JT6wfSK95RL27pDQlDeOAflE+quz6a6V0qu5atQASJhyGOyezwNNc7ijcCmLi4vZ
0dFBu93O+vp6bt68mWvXruWKFblcvmwJVy9fxNKNs3lYfR8HOucy2D2fYd38s7Aa
DLWBpG0hrbVZKUMV3P0KuDWroAXwCIAfi4dlskfyqeBpAah+BffbC2AaLIHOVYYe
mxy9puZbgtaiifSXS2gqlbA3P52+0vEMVGfTUyOlq+mSUQNgqO/PYcmWP7Bgy2aq
1Wp6vV5Go1Hu27ePcrmchYWFXL9+PVevXs3c3GVcvvS/uemtR9lWdS+7d8+m/eBc
RvTfdEv4NAgONJ6fMlTBY1PC1V2IbjEI/lScBUweyZHwVwGQBiBzcQ6uteahL1gM
nVs2BICh4UaPaauUfrmEljIp9YUZdO/I5KAym16VlM7684eC4AhXfsKUQ/vBB1lR
+CgLC96lSqWi1WolSSaTSRqNRjY0NFCpVLK4uJgbN27kO++8w5UrV3Dp0jf5Vu7z
lOXdz87mWew/MJQNvrktowhAYBEd2hlCbxX8fQq4PFVwXzQFzwK4E8CVYhsYsXnA
aQEAcJ5hA7oHi6HzlKF7QA69QTXT3ld2oTA0C5Cyd9sE2ovSGVSIANRKGD5014gD
ENEvoKbyARYVrKZMJuOxY8cYi8VOPHx2uVxsb2+nRqNhXV0dKyoqWFhYyHXr1p1Y
DXKXvsz8dY9wb+0sGvbOoadrHoPd8xkzfF0QhncCz9O372bBqMSgWQGXWwn3b+7D
mwB+Lu4ELh7J7eDpAMgAMKXnXTQFdkDnK0P3gAz63sppNotiuuCTSeiskNJYOhQE
w1VS+lRDE0H/nh+N+H6/s3kOt+UvZlFREffs2cNg8PMHOAOBAA8ePMiOjg7u3r2b
zc3NVKlULCkp+Vw2WLrkr1y34res3HI/uzT30XFoLsO6rztAEgFwPs3wJ78QTNWZ
YZMCLqcSrs0vYjuA+8RTwpeJ28EJIxEEzwSASV1rscm/HXp/GXocMuh6ZedZbI1D
D4U8FVJayiU05adzsEJKv1JKZ7WEHvXMEcsBMcMCmjvmsjj/ORYWbGRjYyN9Pt+X
jp+Ew2EeP36cR44cYWdnJz/66CPu2rWLjY2NrKioYFFREdevX881a9YwN3c5Vy57
mQVvL2R79S+oax/KBl8vIA5BIDgeo6U2O2pUwGWvhlO7Cm0A5opBcLqYAyaONgDD
5wKyP16J/3JvhSFQim6nDDpDWZZ5QHtrwlWSRX+llAOVEhoKMuiXZZ0AwNUwMkEw
Ycqh9+hDrCt9hIVb1rG6upoGg4HJ5JdP/MZiMZrNZh49epRdXV3s6upiZ2cn9+zZ
Q7VazZqaGpaWljI/P5/r1q3jypUruCL3Db69ahErC2bxUOssOg7Npe/YP5oNhtvA
c//HzJV/RX2f3YdlGPgOCEaDvBoRFU3EEKpJTNPXNukxsS5NNC5J0+Ob075vbdKe
tjY2K5qYJmEZRBBUlpF9gBmW2cIyisKALCKbIOAgzAzbsAyzwLAoCsx9f5iBmBM9
1SY0+RO+53O/z3Of+9z7YKDIa6pTTIYBGek7+aQhov1EtJmIfG32MJcfAwDsicil
4kvaM5RMXWMCatcLSdWTxeoeLHv25lCGC8ZFHBgkjJUIZrAxKubAIGWgL1yEO+pd
8/z41tJ/pXA3UpNOQCAQoKmpCZOT3/YiWiwWDGu1KImNRalMhvr6erS2tkKpVKK5
uRn19fW4dOkSioqKIBaLkZaWhpiYGERGRiI0NAThoe8hMWofruT/Cj01r2D4upUb
PFw1sAFg7C8wlj8+oxGTQSslvUlCJj9vOkhEW4joCZs9jPmxAIAt+YCeGkignvFM
ajdmkUorpC5d2TMj/WkMJkQcmKQM1Hwn6NJYGBNzYJQy0OczmGj8xbxVganu/bip
2oe2S7uQnvgBUpITUFFRgYmJiXu6D6enplBx8iRCfX3xhb8/pJGRqC4rw/Xr16FU
KqFUKuf4gUKhQH5+PjIyMnD27FlER0cjLIwLbsgxnAp/B9KUrVCW7YCuaRcmOqwE
8WGJ4FjTf1vUYhrulZLeICXjkTcpzCYJz7qDXP8TUbEHSQGxnl9Lrj1x1DWRQe2m
LOroE1LX4IUn9P3CxZaxXAbDEgaqdGf0JTlgPJcDk4QDQz4Dc+VT8waASc0+DDbu
hijtD0hOioVcLofBYMDU1NS3gzkzM2jNy8Opp5+GcNkyfOzsjI89PRH9xhtQSKVo
bW1FR0cH2tvboVQqUV9fj6qqKly8eBEikQgpKSmIiYnBiRNWFfEE9z0kn3oN1flb
0VPzCvTXdj8gN7ABQPcW7nTvRpeMNdotIf2QjAyiTymXiHbbFMGlNiL4wwHgLhA4
EhG7M5YujaaTalhIqgEBdQ7Klw8MSFdYzDkMzBIGnQIXdCU4YjSHgxEJB8Y8DkzF
q+YFAFPd+zGi3IMS8W+QlBAFkUgEtVp9z8e3WCzQtbaCv3s3MpcvR7e9PU7Y2eEY
i4WPXV3xRUAAhGFhqKuuxo0bN6BWq+eIYm1tLcrKypCXl4f09HScPXsWUVFR4HJD
wQ35BNHH/whZyktzk8KI8l/tFPZ/QxDqLVw40Skmw4CEDI2xVE9Er9tyAsttMbsf
FgB3TwMdpynVzCeVbSnUOSB9pHfwvN/McBaDURsANElsjGQxMEs4VkXwnNe8uIBv
qvah4cJrSOZ9jnR+Gurr678x79/9+LfMZhS8+y4S1qyB0s0N40QQsViItrNDkJ0d
PmSx8NGjj+LswYO4KBajtbUVKpUKKpUKSqUSDQ0NqKioQFFR0Vw1mFURQ0JCEBH2
PhKjXkWd/Ffoq38VI0qr5+BfgQBjf8Fgic9tjZgM/VLSG3JpyJlFbxHR87bUsMd/
YifwoNlAh+ZIOjacRupRIXXohNQ5KHXt1imemTYIXDAqZtAtcIEqxRmGTGeMim2r
4UIP3On49fcGAGvf3wtV1S4IUw4jLTUBCoXivn3/zuQkrsTFIWrdOlxavBi3HAk3
3Qk1Pk7I82dDttEBkRzCURYLH7q748tNm1DI46GpsREd7e1zbaGlpQU1NTUoKSmZ
0w3i4+Nx8uRJcLlcHOd+ilPhv8e5jJfQUbFzbqdwb/HIBoDxv2Kk9plptYiMvRLS
GyVkPLCFjtkCo6tsk4DDjwUA9ldC6H/01lFQNSQkzaCI1TVQ+uykPoPBmJiBNptB
R5oTBlOdMH7XaniiYfP3BoBJzT6MKPegQPh/SEqMQX5+PgYHB7818lksFkxPTUGt
UCD+hRcgXrYMNzmEO9sJk+8QDJ87QBtvD6PAEdmbHBBMhGP29vjQxQWBXl6IO3gQ
lXI52traoNFooFKpcP36ddTX16O8vBznzp2bUxFPnz6N8PBwhIQE4QT3fSRF7UCd
fCu0dffjBjYAGA/itvrXFpXYydQjIb1eSoaEdynVZhNfa8sJzPvhiAeOhBcG0vOD
CdalkF5Ial0uafpLnjH3p7lgPJdBfzaDjgwX9CayMC7iYETGgTGfA3OF//cCgKnu
/TC37UFF3m+QyDuB7OxstLW13XPen5mZgamrCzm//S3SV65Ev7MzbnoT7pwgTFf/
CXeMVzGhrYMu9ynI97Fx0s0FESwWjhPhn2w2At3dEfbznyP3zBlcu3oVbTZuMDsp
VFdXo7i4GFKpFHw+H7GxsTbxiIuw0E9wMvQAzme+hPbyHTA0W91Hk5p93+YBxt+j
K8/dPCsIVUdRhc0d5GfbDDrbQDBvXOCBAfDmZlrSG0+94+mkMghJrcshTY/cz9CX
6WEZzWEwmM2gU8igK4mN0RwORm0WMVPxyu8MgKnu/Zjo2ItrJa8hI/lTpPNTUV1d
fc+yb7FYcHtiAkWBgYhbuxZNbm6YJsItT8LN9whm4RpYLApMtB+EVuiI0kNOiFjq
jhiGAY/FAs/ODqEODjjK4SDQywv8w4dxSS5Hq1KJ9vZ2tLe3o7m5GTU1NSgtLUVB
QQGEQuHcuHj8+HEEB3+OiLAPkHpqG65d3D7HDazVYN832kDfBe8JmyA0pMuiPiLa
edfhiFlJ2P4HBwARuXXGUt1oOqmMAlIP5ZC6S+Y90Cd6zDKSxWAom0F3FgN1CoOR
bA7GpDYecM7zOwPgduc+dNfsQm7a35CSbF3xms3m+/b9Bj4fpwICUOTpaf1EItxa
aA/zH1kwxjtirHwTbre/iu5MBzSFOSNq3RKcXbQIAg8P5Lq4INXeHlFE+MzZGYHu
7uD+8peQJyWhqakJHTduoK2tDS0tLairq0NZWdk3WsJsNQgJCUFo8BFEc9+EIncr
NJd3YujaLpvpZK8VABOHYLyy8Y5GTIY+KelMUjK++SL9ySYJzyqCzHy2gYcCQPsp
yhlOJY0tKKLqzFms7S9YOzOSzcCYy0Cbw0CV5gqjkINxKQcmmZUITiq3f6e/33R9
D4pyf4eEs6chk8nQ09Nz70Mc09Poqa1F8ssvQ7RsGUbt7AAiWIgwscQd3f/7KEw8
NkbO++G2cid6BWz0pjrizHMrkLBqFXIfewyFjzyCfDc3CNlsxBMh1MkJRxYsQODy
5Ug4dAgV58+jqalpjhxevXoVly9fxoULFyCRSJCamgoej4fIyEhwuVyEhnyB8NDD
yOJtR9MFqwXN1Lobt9R7MW04iEnVjhmN2MmglZHOICN9ynt02kYEZ9vAvB6OeJjT
MK7NkcSdtYcZskmlyXLtGSjeOGMUMBjOZTAgYqDO5ECX7owJsSuGZVZBaKz2ue9k
6a4u3I+URC6yswRoaWm5b9Z43GiE6K23kLR6NTTOznN//7SrK7T+/mg56I+ROCeM
SL0x2bIdQ/lLMCSwR/wmLyQ88QQk69ahyNcXCi8vnF+4ECKGQbK9PU7Y2+MYh4OP
PDwQsW0bxHFxqKupQXNzM1pbW9HQ0ICqqioUFxcjLy8PQqEQCQkJiI6OBpfLRUhI
CMJCP8Ep7hsoyXkZ6qodMDTvwuiN13BH9ztoZO6mXhnphr6iodrTdJGIttoEoRW2
czuOPwYAcC4H09uz9jBDNqk6hayu/pJnbw9luMCcy2BIxKBT6ILeZLaVCM6GRsue
+LfawE3VXijLdkGQ/DH4/BRUVVXdV+efHB9HSVAQonx9Ue/uPvf4M2w29L6+aN6y
BU271mMshgVT5mLcatoKk2ItdAJ75L68EHyfFcjz88PFn/wEl558EiXe3riwaBG+
cnWFgM3GGTs7BDk5IZDDQaCPD/hHj6JULsfVhgY0Njaivr4e1dXVUCgUKCwsRFZW
1pzzKCIiAqGhoQgO+gxhwX9FbsI2tJRsg7buFYzp3kFnobe5S0JDgzLS6bKom4he
uasNzGts/GEAwHz1EW0ZTLROAsYs6ujKpE5t8TNjA2nOGMtlYJQw6BEx6OW7wZzN
mQuNGv6N0OikZh8Gru5GQfbfkJTIw7lz56DX6+/550/dvo3reXngbdqEIk9P3LY9
vsXeHqNLl6Jt82a0bNmCthdWYiScDUMCG2O1v4C5cgMGBA44f2AB+Cu8UOjjg0tP
PokrTz+NioAAlPj64uKSJSj08EAOm41Ee3scJ8JRJyd86OYG7rZtkPJ4qKyqwrVr
11BbW4vLly+jtLQU+fn5EIlESEtLQ1xc3NcgCA5GSNBRxIa/jnLpVmg7/gD1hQ2T
bVmk7xaRblhGhjdfpEO2zeD6+U4NPwwAXA7tpBVaHmnHM0hlyqKOHgFpuuVPGvrS
F1jGcxkMSznoEzHozVwIUxYHZjFnLjQ6/RCr06nu/RhW7kGJ5AASeCchFouh0Wju
y/r1N24gdft2ZHt7Y8jR0fpZdnaY8vBA509/ipYdO9C+cSNubFoN/REGplhHjJU/
j/G6zejLdMDlv3OQsmIpzvv44MqqVWhctw5XNmzApY0bUernh4vLl6Ng0aK5lhBN
hM9ZLHzEMPhkzRrEHj6MCwUFqKysRF1dHaqqqlBaWgq5XD4HAh6Ph6ioKISHhyM4
ONhaDYL+jPPi19FcvGWmJpllVApoaFBMQ4nvUoJtM7hhvkOjDwMAZyJy74yla2Pp
pBrOovbeTNJ0yXwGtTn/ZRm1mUEGxQx6sx+BQcBgVMSBScrBUIE7bj5gaPRO136M
d+zFlcLXkJr4OQSZfDQ2Nt5T5weAMYMB4rffRryvL5Rs9lzpn2IY9Pv5oWnnTlz/
2c/QuX491E8/Du2fPTAc54gR+XqMNbyIfoED2rhsJPgsRcHKlaj09UXL6tVo8vVF
TUAAKjduhOKpp3B+9WoUeHpCumAB0l1ccMbODsF2dghks/EPDgcRr74K4ZkzUJSW
oqysbM56JpfLIZFIkJmZicTExDkZOTg4GF988U+EBB3F2TMHkHN88WhlPBnUQtJX
RVLlXaFR7/n0CD4MANhE5HYjmr4a4ZPanEUd/QJSd0s8tX15ayzmHA7GZBzoJAx6
cxdhgO+CsVzO16HR6gfLCkxqrCNfDv9DpKYmoby8HKOjo/ed96ujoxG7fj0qFyz4
uu87OcG0ciVaX3oJrS++CLW/P7r9/aEJ8IPmdS8MxzphRLQC5ornoBU6YzDdAXHe
yyBbsQJVvr5oWrsWLWvWoPnxx1Hr54eKgAAUBwSgyM8PBY89BvHixUh3dQXPwQHh
RPiECO+zWDiydi14778PeV4eysvLoVAoUFxcDLlcDqlUOgeCmJgYREREICwsDMHB
wQgK+gxfHjkwLQh5dKQ5jfRdfBpgOdBeWxtYNZ8ewYc5EulERJzmCIqc3QkMCEjT
nePeM3Bxw4xJyGBcysGQhPl/6r40Ksoz2/ogglQV86BGcWY0CoiZOxozGKMxRm1N
fzed2zfd6e7cxCTGxCROzIOoKIIDijIPRTEUVcUMiswog6AiKjPUTFUxOEYF9vfj
fSlNOvaKBtPf9+NZsJY/XItnv+ec55y994E0ywI9sVwMpT8oBH+NVuDHzg1QNq1F
buo/ceLEMeTl5UGpVP7yfH94GO1nziDqhReQPW0ahiZM0If+m1OnonXpUjS//Tba
PD3RvXAhAwJXV1x7cxYGjxqhP2UyhkoXQyW0hIY/AYdmTINwzhxUsAC47OyMi05O
aHR2Rt28eahYsAAlHh7If/ZZZM+ejQw7OyRbWODEpEkIMzSEPxF+MDDAFmNjBL37
LlIOH0ZeXh7KyspQXFyMvLw8ZGVlgc/nIzo6GpGRkTh48CBCQkIQGBgIfz9vhHkv
u1N22EDblUS6z1bTTjYNOPzKXzAAACAASURBVLHcgKeiGHocABgREad2D23SxlHX
DT619aVSuzTdqFtZ8vw9XQoXt7J40Ai5kAk56E62ZiaDetHotH87GWSoXetQIvyA
UfNkpOHatWuPzPuDvb1IXL0aiXPmQGpoqL/8u6am6Fq8GJfWrMGVF19El5sbOt3c
0MOe5uecMHjYCLpYMwzkP4u+7GlQJk1EykuTkTpjBiqcnNDo6IgWV1dccnFBo7Mz
6h0dcc7BAeXz5+PUggXIcXODyMkJGfb2SLGxQZSFBcInTUIAEbYbGOCbiRPh5eKC
8M2bkZWRgeLiYlRUVKC0tBSFhYUQCoWIi4vDwYMHERQUBB8fbwT5fY7I7VY3yo6Q
tjWRtKk7KIWIVrD9AMunpRh6HAAYEtGkYm96uy+aum/yqU2TSu1yAXUpy56/qUrk
4LaQB62QC3kWBx0pU6Djcx9MBvNtGYqY9NFPvvNFa5AS54fkpETU19fj9u3bv/ze
12qR//33OO7ggBZj4wd5n8OB0tUVTStW4PKSJehkL7/rIQC0uLlAE2iM/uNGGBA7
QlswF/KEichda4WUWbNQ6uCAehcXXHZ1xQUXFzQ6OaHe2Rm1jo6odnREqYMDCl1d
ke3mBqGLC/izZiHJ1hYnrKxwiMtFiKEhdpqY4GtjY3xvbw/RyZOor69Hc3Mzzp49
i4KCAvD5fBw+fBi7d++Gr68vfLx34FjEGvCDra6XHyVdO580LSepga0D3Nin4FNR
DD0OACYQkVHIRzRbfoJ6b6VQm5ZP7co06lScWtivTDYfvZXJg07IhSKTi1b+M1An
cfWiUV0u75EUsbG8n5WyFbGxJ1FSUoL+/v5f/PLv3bmDxsREHF+4EGXm5vhx7Mln
aIiBmTNx5bXXcOmtt3DNwwMd7u7odHdHN3t63NxwbeGzkH1tBu0xI/RnzIWu0Bny
hIko/6cFEmbPRvG8eahxdsZFFxdcdHVFo4sLGpydcc7REVWOjqiYNw9n5s1DgaMj
8hwckD9jBvJtbZFtYYEEExPsNzXFNktLfGlsjIANG1CYn4/6+no0NDTg9OnTSE9P
12sU/fz84O29C2FBa1CU80ecjp53qzaatJ1p1KfLoD6XGfRfD9nHWD0ND6HHBYAh
EfF6j1HzDWYm0K4SUKcsd26fSjht9Ho6D/1sR/Aqfypk8ZwHk8Fc3i9SxO52bUDf
xbXITvkLYk4eglgsgkwme2S3T15fj5OvvALRtGnQsZcPAwPcsbZG28svo2nVKrS8
8ALaPDzQ5uGBdg8PdHh4oIs9rW4L0f3RZPQfmQhtyjPQ5jpBnjIR53dyEDt7Ngoc
HFDj6IgmV1c0uLrivIsL6pydcdbJCVWOjjgzbx7OzJ2LkqlTUWVjgxpLS5zh8SDi
cBDJ5cLb1hZfGBjgaycn7NuzB0VFRairq0N5eTmys7MRFxeHAwcOICAggAn93h8h
PWoJ6iv+D66WLL3flECa7gxSDUhIfeBTCmYJInNZQ+lxLwYf1yl8AhFxuiJJNJhI
Hf0p1K4WUKdUNFnRl+80OpjGw0AmFyohB9dS7dCbZKmfDPbn8KA7PfsnALjfw6h4
y0XrEB+9BwJBKlpaWnDv3r1fzvtSKdL+9CfEOjqid+zyJ0zAXXNz9Lq7o3H1alx6
+WVc8/BA688A0MmeDnd3XHtnDnQRxtDFWUKTNQvyVGO0HjBB1KxZyHZwQKWTExqc
nNDo6orzrq6odXZGjZMTKh0dUTZvHkrt7VFjZYVaa2tUW1oiz8wMMWZmCLaxwTcc
Dr6cPBkHg4KQn5+PmpoaVFdXIzc3F0lJSQgPD0dQUBD8/f3h67UF0WGvoSzzdbSf
W4eB7o/QnmWu7c0itU5CquqDlMNKxuY/ZCht/J8EgAERTWo7TPsGEqhjkE8dmjTq
lGVayLRlniO6VC4GM7joE3LRLjBHT/p0DKbxcF3EiEY1+XY/AcCdjg24Uv4eUhN8
kZDAjHh/6ckHAHeGhnAmOBjHnZzQaGKC+2N9fhMTqObOxcU330TjsmW47O6OFg+P
ByBwd0c7+3sHC4jm512hOWCM/hhTaNKnQZluitawSTgxbzqyHBxQ6eqKOvby611d
Ue3sjCpnZ1Q4OKBs9mxUT5mCBmtr1Fpb47SZGVK4XBywtsYPlpb4wtQUOz/8EInx
8Th37hxqampw6tQppKWlITIyEnv37oW/vz+8dm3HkT1vIS9xCS4Uvw15w3u4M/Q1
pEVzB3vFpNZISKkWUDdbCC5+yE94XAUjT7IswujyQfqnJpa6h1KoQ5tGHdI0o15t
5Yt3NclcDGVwoRFy0SXgoDtrDrSpXNwUMYMhTa4Ffry68iE1zxpkJHyOmOgoFBcX
P7LVO3z/PlrEYhxzc8MpOzvcGPv6jYwwNG0aLi9diobly9G0eDGaPTzQsmgRrixa
hFZPT7QuWoTWRYvQ5u6OVhYAFxcsgDJ4EnTHOejjT4UqwxKtEZOQ/PwzEMyahTJX
V5xzdUXD/Pmoc3VFjbMzKpydUe7ggKrp09FgZ4d6GxuUW1khw8wMhy0ssMPKCl8Z
GmL7smVIjI9HWVkZamtrcebMGWRlZSE6OhoHDhxAYGAgfH29EeKzFqKYpThfuBy9
tatx/do6DN/eiqGmpXd6RKRWZZNiUER9X6+jLWw/wJkVjnL/4wA4F0Kvq6Kp53oK
dejSqF0uoG5NxfPXlQkc3Mjgoj+Li94MDnokDlAlcfSTQU02Mxm8170RusvrkJvy
J8SePAixSIienp5HdvsUFy4g6tVXIZgzB+qxyzc0xC1ra7QtXoxzq1ah4cUXcdHD
A83u7rjs6YkWT09cYU+rpyeusUBodXfHxYUL0bXVHNqjE9CXZANVhjU6Io2R9Y4t
kubOxSknJ1S6uqJ+/nycc3VFjYsLKpycUDlzJurt7FBva4sqW1vkWFjghKUlAqyt
scXYGF86OiIoMBB5eXk4f/48KioqkJOTg4SEBP2Tz8/PF35enyAhYgkqRW+i6+y7
+vHwiO5TQPcxerPN+hQSUugkpC4IohRWOLrwaegFngQAE+O/pOmyKJLeSGLNo9Ko
S3VqoU6WaDZ6PZ0BgELIRW/uPMjiubiZaYpBEQ8aCRf9pc6407kBNTnvITF2N1JT
U3Hx4kXcuXPnl9U8cjky//lPRDs44JqBAa4ToY8I8okT0WJjgzoHB9Q5OOC8qysu
eHriInsus6fF0xPNnp64xgKhddEiXFy4EB1/mwztoUnQxFlAnWGH7pNGyPvACglz
56LA2RmVrq6omT8fNa6uqHJ2RuWcOaidMgWNU6ei3tYWhZaWSLSwwB4bG3xvZoav
7Oyw7/vvkZ2djZqaGtTV1aGwsBB8Ph9HjhzB7t274e/vD3+/nYgLfx0l6a+jpZSh
k//Y+Ufc72GYQrj7HRTFs/plYlL2SUglTaKr7HRw7DVgPp79gCcCABGZdEbS5euJ
1NGfSu2KVOpS5M1WSdOeGR0UcDCYxYUqiwtF3gzIBJMxlP5ANKrMnY4r5auRErsN
cXFxqKys/MW8Pzw8jB/v3MGFvDyEzJuHQ1ZW4FtZIcPEBNkTJqCYCBVEOEeE2okT
UWdlhYa5c3HB0xMXPD1xib34SywILnt64qqnJ64sWoRLbm64snYm+kJNoD1pCoXA
GvLkiSj5hxWi58xBtpMTSp2dUTF/PipdXVHp6Iiz06ejccoU1E+dilIbG6SZm+Og
tTW2W1vjy0mTsGP9ekRHR6Oqqgp1dXV6UUlUVBT27duHgIAAeHttR3jwOyhKeQ1N
xQyN/Pq1dayyiKWJDe/AUNOS21IJKZViUg2KSPPRG7TlIbq41XgyhJ4YAFcjKHsg
gWEHjZlHSSUOowMCRiiiEXGhzLaDPNcJAwIermfxoM7k4FqqNQQn/xvRJw8jPz8f
SqUSGo0G3d3daGtrQ1tbG7q7uyGXy6FWq9Fz9SokQUH4xsoKW7hceNnYIMzKCicn
TICYCGeIUEWEWiLUcjionzkT5+fPRyMbCcaAcPnhn+7uaHrNEYpALvqiOVAmm0Oe
MgHlX5khctYsZDo64rSzM0rnz0eFszNqZs1Cw+TJaJw6FVWTJ0NkaYlIS0t4W1ri
K0NDbH3xRcTGxqK0tFT/5JNIJIiNjUVYWJg+7wfu+gDpUUtQl7ccPbWrcavtjyxZ
9CGi6PUvgP6/oTfbrE8uIpVOTOpsP0plXwOOD7uKjwcIngQAhkQ0qWk/HRxjB6lT
qUOWadojK/IY0fG5uJHF6AP7ciygKHKDNoVpCGmEHJw9YYXIgz8gLCwMx44dQ2xs
LBITE5GWlobs7GycPn0atbW1aG5uRkdHB6RSKWRSKTIiIuD/4ov4isPBd5aWCJ48
Gce4XKQaGKCAjQa1RKg1MkKDnR0a5s1DExsNmlggXGR/v+DhgbpFC9C70wzak8ZQ
xhtCkWKIqu94OD5vJtIcHHDKxQVnXFxQ6eCA+meewflp01A9bRpyJ09GjIUFAq2t
8Y2JCb6ZPRvBO3dCLBajqakJ1dXVyMvLQ1JSEg4dOoTg4GD4+vrC1/trJB5agrLM
N3CtfJWeMv5zpvD9no2jGNkB5ek5/VIxqfokpJIlUetDbOFpbCE4LmvmnhgAFYH0
xU/No4y6eoufu9uXzMHNLB4GxFxosrmQnVrETAbTedBmctGRykP28dcREvQ9fH29
4e/vj927dyMsLAwxMTFIT09HQUEBKisrcf78eVy5cgVSqRRXr17F2eJiHPnkE2zm
8fCtqSl87Oywz9IScYaGEBOhZCwaTJiAWi4XdTNn4rybGxo9PdHIXn7TokVocndH
jZsbOr+1xEDsRChPGqFltwny/2yJKFd7JDs6otjFBSWOjjg7cyYapk9HzbRpKJo8
GQlWVthrZ4fvzM3xtYUFgjdtQlZWFmpqanD27FkUFRVBIBAgMjISe/bsgZ+fH/x9
tyFyzzKcEizDlTIm7/9UXr7xp1EA3rjZ8taPvWJSKcWkHBSR5rsNtJnlB8wZz9nA
kwLAWPg9vT3GDtKw5lFdhZ43FAkc3MrkYVDMhTaHi97ChZAmWWAwjQddBlMcdohm
o1S4EvuCPkaA/w74+voiICAAoaGhOHr0KJKSkiAWi1FSUoLa2lpcvnwZHR0d6O3t
RUNdHYSHDsFn0SJ8zeXieysrBNjZ4ZiJCQQGBsgjQjkRaohw1tgYZ+3sUDNvHho8
PHDe05P56eGBGjc3nH3DAaeXzULmK/ZIWDwDUa4zETdvDjKcnJDv5ITSGTNQP2MG
au3tcWbKFAisrRFma4sd1tbYRIQda9YgMjISZ86c0auKhUIhTpw4gf379yMgIAD+
fl4I8V4FccwSnC98G6qm9zF0df3P7Og2/msauLEJ0mzLPoWYFFoRqasPUAZbB7iw
r4FxIYs+KQCM/vEWzZVFMToBXSq1KdOpszPbVStLshi9mckUfbps5iUgFc7EgICH
QSFTCPZm2aG37j3U5a1A9MH3EBywFb6+PvD390dISAjCwsIQHR2NtLQ0FBYWorKy
Ek1NTbh27Rp6enogl8lwWiRCxH//N742M8M35ubwtrVFmLk54gwNISTCKTYtVBka
oobHQ/X06Ti3cCFqPTxQ6+GBand3lC14FgUuLkh3dESqoyOSnZyQ4eiIbGdnFM+e
jarp03HO3h4V9vbItLXFUWtr+FpbY4uhIb57/nkcO3oUJSUlOHv2LCoqKvSt3rG8
7+fniwCvvyDjxFKczX4LXWdX6y//3wlH7/dsHAX80Ve+YIh9DSj700j6jBWtYDUD
s8Zrx9CTAGDMOsa6M5KaridRez+fMY/qzJqhkmVMH30gDOGiRzwNskI3hiEkZKji
qmwL6M4vh6JxDa6UrURR6tvYF/g3fTQIDAzE3r17cezYMSQnJ0MsFuPMmTM/iQad
nZ24dvkyUkNDsWvBAnzN42GbhQWCbGxw3MwM/AkTkEOE02xEqJw0CeV2dqh2dkaN
mxsq3d1RtnAhiufPR7arK7JcXJDh7IxcNycUe8xB6Qx7VE6bhjJ7e0imTMFxKysE
2djgWy4Xm+3t4f/NNxAIBKivr0dFRQXy8/ORnJyMQ4cOISQkBP7+/gjw2wr+0aWo
yHqQ9x8tHP05AHxwX7pxRCYxVqokpBgUkTrqKwr8WRT4zVzB3wIAi6sRlDGYQB1D
qdSqFlB7Z7qtTJ7rPDIgYLp//RIuerNsoaxcClUSMxgaawgN1jyPG63roWtei97a
91AteRuRoe8hJGgrfH199bVBeHg4YmJi9NGgqqoKjY2NuHLlCnp6etB86RLOiEQI
++ADbDEzwxZTU3jZ2eGApSVijI2RRoRCFgilhoYoNTPDqRkzULZwASpfdEXl6w6o
fGc2atbbo/Hj6bi02RZtW02RP/MZ5E2bBvGUKYiztsYeGxt8Z2aGr4yM4PvJJ+Dz
+SgvL0dVVRUKCgqQmpqqz/uBgYHw992GsIDXkZ+0FJfPMLZzv0Y1/EA29gkwsgOq
YnuNQkwKnYSU105QNRG98ZCZ1G+mij3p3mBDIjK7sJ9298dT53U+tfalMjoB1ZnF
w7pULm6NAUBoDkX1MvTGcfUmUrocHgbKnHG/l1H7Dl5ZB1XT+2itfBfiuLewN+if
8PfbAR8fHwQEBGDv3r04fvz4T2qDc+fOobm5GW1tbejp6UF1WRkSg4Oxw8kJm3k8
fG9piQAbGxzmcpFoYIAsIuQRodjAAKc4HJy2t0b71zaQhlpAEcVFfwYXQyVLoc1Z
Ai3fCAkzpiBx8mSctLXFAWtrbDc3x2YDA/ywciX279+PwsJCvWI4MzNTn/eDgoLg
5+uNgJ3vIyt6CWpzl6O39j30X173K6zmHgDgXs/GUSAENy4uuy0Tk6JPQvIhIfX9
+XX6+0MTwrHN4wb/CQDwqoPpYw3DDmrVCKi9O9WoR1n2/I99yRzczjLFgJhhB8lL
X0Bv6hQMsYMhXfZDDCGWD3Cz9Y8YaFmHrrOrUSlajiN71yIk8Fv4+PjAz88Pu3fv
RkREBGJjY5GRkYH8/HxUVFSgoaEBLS0tuHbtGro6O5GXkoJ977+PzZaW2Gxqil22
tthrbo4oIyMkEyGTCLlEKLIkyHwJfYINGL53G8AARn68CF3lx1AnT8KxRWYIsbJG
kKUlvCwtsdnICN+6uSE8OBi5LAO4tLQUYrFY/95nWr1+CPLbhNTIV1ElfhNdZ1fr
jSN+tZ3sWBq4+wNwZwvkuZYqVTbJ+8WkKttL6ex+AZeHXgNP3BN4UgBMICKTnB30
kuok9Yx5B0n51K0qXTykSODittAUAyIu5JkcyArnozfbBTo+DzeyWMlY/k9NpO73
bMTdrg0YvLIOysY1uFTyDjJOvoX9uz+Hn++D2iA0NFQfDUQiEU6fPo2amhpcvHhR
r9mrraxEzK5d+H7WLHzF4+E7c3P4WlkhjMNBNBFSiCDiEFr+RpAfNoKubC1Gbu7D
XeUWaErdIeNPwMl3uPjG3BRbLCywxcQEX1lawmfTJsTFxaGsrEw/3x9774/lfX+f
b3F876soTl2Gy2fegfbS2sfwEdr4cxCMAPswcG7xkFxMij4xKQfSSO5iT+tZppDd
mMX8kxaDv2V1vPFflpFV7zHquZlMbf2pD7yD5Kk2zEtAzIMikwNZ3mzIy15CXxIX
N4WmDAByuLjZ8IdfFILebP0jNBfXovvcapQL38LhPesRHMBEA19fX+zZswcRERGI
jo6GQCBAXl4eysvL9dSr1tZW1NXVITshAbtXrsRmKyt8ZWKC7TY2CDE1RcTEiYg2
ItSsIigjCEqBPTSnXKHKtUd32lR0Jxsg4xND/N2ch084HPzvhAnY9tFHiImJwalT
p1BWVoa8vDykpKTg6NGj2Lt3L5v3d2C//9so4r+GC8UroDi/5tdfvvRfAcCkgSBg
6FPIJFylUkSKARGphLvoCEsZn8XSxThPWgs8Wd54yDuoM5IqHvYOUuZOVyhEs0eH
2JeAWsiBXDIFfY2rII/n4EYmDwMiHrQ5PAyUz38kR/BOBxMN5A1rcPnMSqRELkdo
8Gfw9dn5k75BZGQkkpKSIBQKUVxcjMrKSjQ0NKC5uRktLS0oys5G1Nat2Dp9Or7k
cvGtmRm8zMywZ5IxhJ4EZThBemIiuuMmoDPeCF1xk3DlqAGyNxviI1MT/MXAAF+/
9hqCAwKQnp6OyspKFBQUIC0tDcePH0doaCjb6vVFoNd/QRK7BPX5y/VWcr8u9P+b
NKD5GEAotJXzB+QiUmjFpFClUJsFl974GVHkiZxFn7x6ZDmCV8MpZkwnoBZQlyLL
QqosWjAykMq0hPuEHCizraG7sAqyVFsMPoZk7F43Y/3ef3kd2qvexZmMt3Bk3wcI
DvgW3t5e8PX1RUhICMLDw3HixAmkpqbqi8Samho0NDSgqakJF5qakH78OPzffBOb
razwJYeDrTweDs6dhGv+hAt+hLM/EEq/NUTmx8Y4+s5EbPc0wp8MDPCxvT38tm1D
WloaiouLUVxcDKFQiJiYGISFhelbvUF+m5B8+BWUC99Ae9W70F5a+/iXL31UGjgA
6P4KmdhYqRaTfDCL1IlbKfhnMnLO7w0AAyIybAqlH3Rx1HmdT21qPnUphZwe1Znn
74/1/7VZHKglHOhql0CZ64j+VB6GMnm/as/g/Z6NuNe9UR8NZPXvoan4HaREvoN9
wZ/Bx3sXfHy89bXBkSNHEB8fj8zMTOTl5aG0tBRnz57Vu4EWikSI+PxzfD1tGj4z
MsJWSxMcftEYgXMM8LWJATZxufjMzAwfm5jgA0NDfGRoiC3/8z8ICwtDbm6u/vJj
Y2MRERGB3bt3M90+3+8QHrgURfzXcOn0O1A1vY8bresf31L2UWlgaBOA/dCUOfcr
JSTXiUkhT6TLhhP0PIGpT8oT+K0AmFDqR2vVMdR9PYXa+/jUqcqgLnnJc7eUicy7
X5fFhSabA035ImgqXkRfMhfXM1jJWPavN5O808HUBtpLa9FR/S5Op72FI6H/hQDf
b+DltQu+vr4IDg5GeHg4jh8/juTkZGRlZaGgoAAVFRX6GX1xYSGSwsPh9eqr2GRq
in8YGuIfkyZh08SJ+MrICJtNTfF3Y2P8dcIEfPHuuwgLDYVIJEJBQQHEYjESExNx
+PBhfZ/f18cLId6rkR2/BE3FK37Fe//x0wATBY4Auo+hyDaWq8UkH8oi1cmv9FHg
4c7gY70IfisADCI+IWdZFLNPQMOnTnUGdUqLGHLIjQweBljPwL5TThi8tBLyOA6u
pzN1gCabi8GKBb9aOTwWDQZa1kFa9x4ai1Yg8chK7An8FN5eO+Ht7aXvGxw6dAjR
0dHg8/mQSCQoKirSR4Tq6mpkJCRg31//ii+mTsXfJ07EpxwOvjY2xmYOB58bGOBL
Dw/4bNuG2NhYFBYWQiwWIyUlBZGRkQ/m+97e2O37P0iPekX/5Bu6uh53On7D9tRH
pYFbWwBEQFfhqlOKmSigSKQrvEm0jFUPTWHTwGN5Cv1mABCReVcktQwlUoc2Zcw6
ZrZKlj5tdCiNhyEWAOp8e9xoXY+eJCsMCrj6OkBX/HjS8XvdzHNxrIt4pWwlCvnL
cXjfh/D33Qovr53w8fFBYGAg9u/fj2PHjiE+Ph5paWkQi8V6IJw+fRr52dk4sXs3
tj33HD7jcPDZhAnYZGCATVZW2LVlC06ePAmxWAyxWIykpCRERUUhNDRUz+oN8NmE
2LBXUZH1Bq6Wr9Tn/d+0V0D6y00hJgpEAUP/C0U2V8HWAqr07bSH7QzOfpIp4XgA
wOxqBIkG4qmzP4Xa+9KooyvdVibPcR7pF3CZdXLZPKhybHDz2nr0ZM2Fjs9l6gAJ
D9oCWwx3b3hs/4B73RvxY+cG9F9maoOGghVIPLIaIQGfwmvXDnh7e+mHSwcPHsSJ
EyeQmJiIjIwM5OTkoKCgACUlJYwncFQUgv78Z3wxZQo+NTbGdx9/jD179kAgECAn
J0fv+HHgwAH95fv5bMMB/zdwSrBM3+p9fPPox0wDt7YAiMLguUWDSjHJtCJS6FKo
02k6vckum5jKUsZ+tYJoPABg2rSf9mjimB3DmjTq6Ezl9ihOPzesSWFeAgMSHtTZ
FhhsfBO9xc9BlcQ+B8Wsl2Djk3kJjqWE69fWQ9X0Pq6Wr0J+8tuI2PMRfLy/hZfX
Lnh7eyMoKAihoaE4fPgwoqOjkZSUpCegFBYWIj8/H/zkZER4e2P31q04dvQoUlNT
kZWVBYFAgOjoaISHhyMkJISRcvn4YJ//BohiXkV9/nJI6957sqLvMdMAEwVOAne/
hzLXcuxFoCzbQ9EPvQjsHmdI9NvoRKx1THkAfayOYa1jBNTexTfqlp1+7raKLQQH
JTz0ibnQVT0H2bkV6I1lCCKD+rmAy29yEhvbFKZrZppH9fkrEBuxGkG+n2LXzu3w
8vLSF4lhYWE4evQoYmNjkZycjLS0NAiFQkgkEr2rR1ZWFsRisf7yxzp9AQEBTA/C
+3+QfPgVVGS9gbbKVfrdQuNmhyv9N1Fg6HMAKbjV/MZthYjkWhHJhzJI8ael9CFL
GJnxcC3wewCAG/cFvSA/QdIbDDegvSeFunqL3Pul8TzczGA6ghoJF5rTzlBffB9d
STaMYIStD8Zjy9hYK3nspdBSuhK5SStwcPeH8Nq5Fbt27oCXF1MkjnEOxoAQHx+P
1NRUCIVCiEQiSCQSpKWl6TeIjE34/Pz84O+zGZF7lqIk/XW0VqzSN3vGfdfgv40C
xwEcgLpwmlotJtmAmBTXTtAZdgm1E1sL/Cp7ufEAgMkzVmTdFUmdNxhuQJuUT53d
kjkqqWAKww0QM0QQdb49tM1r0S12gpblDvZLGMHI3dZ3x21p5J2ODdA1r0VP7Wo0
FLyD2Ij34O/9KXbu+AE7d+7UzxX27duHgwcP4tixYz9JDenp6YiPj8fRo0cRGhqq
//J9fLyw338F8hKXorGIYffcantK+4f/TTE4Iv+vUUAE6P4GpcRY1ici+VAWqWO/
IV8icmdrgV+1fm48oIgi5gAAHN9JREFUADCJiMyvHaKCwQTGTVyeQp1d6bYymcRx
dEDAmEZqRVyoc6wx2LIO8tJXoErk4uaYg0gOF0Nnx3fJ1FhtoDjPtJLFcW8jNPBD
7NzxHXbuYNKCn58fgoODsX//fkREROD48eOIjY1FdHS03tgpKCiIIXX6emOv3wZI
4h6MeIeurn+662alv5wGmCgQCiAN1+ueH1SJSNYvIfmAgLpfd6NVbBR45mFjiUdF
gt/OK2f+A9ML+2m/juEGtCn51Nkl4PbITy0e0aRwcfMhlrCufhk0F95DdyyPcRDJ
YtKD7tTsp7ZFVNe8Fp01q1GbtwLH978H312fYseOH7BjB8M5GCOfjAGBWQ7B2MH7
+fnBy2sX/L3+hviIV1EteRPtVe+i//K6p799/Jc6g90Pg0AEYD/6Cqeo+iQkHRST
4uoJKiCi59h19GNOoxOeJgCMiIhb5k9/VcdQ142UB84h8pLnbisTObglZNbKMB1B
dwxdW4+edHt9W1grZnYMDT+lP+aPnUw00F5ai+aSlciMXo69AUw02LF9G7Zv364f
MO3evZt1/x67fC/4eG/Fsb1v6Ee8T2ez6CMA8O+iwPUvAZQCA59CJTGWacQkuy4i
VcYuCmJTgT0rJHmkjmA8AGBIRJPiv6TFsijqvZlMbRo+dcgF1CUtWqCTsx3BQVYZ
1Fc0F7c7/ghZkSfUSUxbWJvFRV8OFzfqX35qK2budjG1Qd/F99F1djXO5a5A1IH3
4bPrf7F923f44YcfsGvXLobQwb71vb29sXPndhwIWIWchAdTvvF97z95MfigICzG
rYuv31KJSaaTkHwok+Rfr6U/s6lg6r/TEYwHAMY2jJp1R9KVoUTGOEKZSp29EnuV
Qmg/OpjOdgQlPKjzJuPHrg1Q17+DnlgOBgU89AsZDYHuKa2Y+bkVzdDV9foxc9qJ
5Qj2+RA7d2zFju3bsGPHDv1b32vXTgR7fwD+0T+gJvstSOuYvP/rl0Q9/SjAgKAI
QCp0pU4atYRk/RJSaFKo5WVXWsqmgkdazIwHAMYoYty2wyToT6CO/mSmI9grtJCp
ixeM6Dt/Yi7U2ea4c3UVdM1r0cWfCi2fi4EMHrQSLjT5Nr/bsslbbQzppL36XVRk
LcfhPWvgteNzbNv2HbZt28Y0kXZ8itiDS3Em/XVcLV+JgZZ1T6/q/y1RYOBTABcA
HICmaIqyT0KyQQkpuuLpFHeS3nPYZsxw8uEoMF4AMCCiSc0HaZsmlroGk6mjL5U6
ewVGvZryF+6qkxjPwH52AHS99gUMXFmHnnw3qBIZO7l+EQ+aXNZY+ndaOHm3awOG
rq6H5uJaXD6zEvzI5Qj2+TN27tiKXTu/R+LhFSgXvqFv9f4uef8JosCPre/dg24T
gFbg7naoc83kuhySXs8mxcXjxGfrgZlsm9jkYUHJ+JgMsBSxsyH0luIk9VxPog5t
KnVIU6lHXbposDeOueSBsYq/xAFD19ZDce5tdMdw0C9g/k2bw4Pu9MzfdfX8GOlE
feF9dFS/iyrx2zi+/30kHFmDGslbuFK2Eorza3Cjdf0TsHvGvy/QX+U2oiqaNqLI
Nh3pzDQa7BRSX3cWqXrFpJBKSC6r/LsMyg+hzjGW6nJIdj2blGfD6QTLHhrjEOqL
wvHzmiEy2vIeWXdGUs9gAnXo+NQhT6Vuee5MVQ9/MqsaZuoATcEU3GhlvryO5KnQ
pHAZX2EJF5o8y6e+cfRRG0kGr6yD4vwadJ9bjStlK9FWuUq/OPp3D/u9H+B6w8vo
K5kDZYE1lMXmUBZbQJZtOCKT0LBcQsNSEd3tFFJfj4hUUgkpZGKSK7JJppCQTJVv
I+vLNe7tzyXpjRxS1h+hY6zLyPSHIsGE8QTARCIyaQmnIm0cdQ2kULuCT11SoYW0
J9tlRJPyQBmkybXA9eZ3MHBlHboLFkGeyGgG+tmm0GDlwt/9j32/Z6N+K9lYWui7
+LibQX/bGTz3PFRF06HIN4cin8OcAg6U7FGdsoKqiAtFDg0rc4yG+/LNR9SnZ9+6
0fDKrXut794f6Vo3cu/Kyvu36168OVQyt78/z6ZvIJunHJSQ/EYOKZpPUuIUS70D
uRkRTRxvAEw6F0LBqhjqGkphZePpRt09hZ73lAkPlEHaXB50VZ640boeivpV6DjJ
w4CAhwEhYyvb9zMzqd/73OnYoD9P88u/eXEZ+k7P+umF/+zSlQUcqArNoSubhx+v
LmeEo/e9gIHPcffC0tHBoukjKqHxgEZI2n4haQdFpFVnkKw9kS40HqeysgOUlRNI
MZk+tEfgRT98t5HefGhsbDSeABhTDa+RRVHvjSRq7+NTu0xAXR05z/Z3x3D1nT9d
Dg+aojm43cEMbroy50KdxMXgGFcwh4sbDS//5/LtUzwDNYugKpr8rxdeaMJetgn6
Tj+DW5eWAiO7AMQB2IORttUYLJ6OgXwzDOVx0S82GOlMpvsXouhubiD1bN1ISWte
ppBnrOkLIvpvIvoTu5F8Les4+iY7LJrPtoktngoAXnGm6W2HqWsggTp0ydSmEFBn
W/ozym7BtNH+VJ6eIKLOtcaPbBWuqFqG7hgOBtO4DFdQwoWmaNp/NAqM59FVPAtl
oS0U+SYPXThzVIUc9JU8g7utK8A0dcoBHMSdhpfRn2eKgRxjDORMQke6BWrjp6I4
7llkJPwF8QdfGD34FfUf20L98VtpYOVzdJKIPieiD4nofdZY6jUieoXlCrizpJEZ
bIuYN94pYKwhZH3xAGVpYqlzIJnaVALqbE3mSHvy3Eb01rFiHvqyObjZuESvDWxL
nAxNMheDQqY13JfDxe2Ly/6/vnRFvjV76SZQFDy4eFWROYZqFwHYB6ANQBFG2t7F
QL4ZBnONocnm4DLfBiUnZkIQ7orIYE8c37MYJ/Y9h9gDzyM5+e9IT/8GCcGzbsXv
IG26L2kzd5Jiph19zX7xy4jIk/3aHVi62HQ291uxTSGTpwGAiURkURZA3ypPUvf1
JGYu0JFEPT2FHrdkcUw/YJDtB+jOOOJOB8Pv6yx4DtI4Dq6nsXODHC60xfb/X0WB
/qqF7JfO+cmFKws5UBdb4277SgBlAO4BOIyhM3MwmGuM/txJuJpmg/LY2ciKXIjk
wy8h9ejLSDv+CjJP/gGi2CXISViCguSlKE59DSXpy1BdfRDnzm1GYbi17tQBUldF
kEbsSxVsuP8Du25mHhvuJ7MXb85++ZPG5GTjCQC9aDTiE1rUHUnSwQRq16ZQey+f
urvEs9XdSTajAwKmLawRcaHJt8Pd7g241fZH9NauRluMJXR8Lrt9nIkCNxtf/X/6
0gfPLYayaPIvhve+U7YYlq4HwNreD/tgoNAGgznGkAp5qI6ZiswIJ5zY64m4sBfA
P/ISMk/8ATkJS1DEfw2lGa+jWvIm6vLfRlPxClw+8w6ulK7ARbHH6Pnc1+73dmdB
3vo3NMVxVM3xpOxKInXaTjpORC+x4tHpLDlk7Is3fog6PmG8+wBjotFJRGR2JZyq
tHFMW1iWTN1d6abS3hzXkb4UdgAk4qIvl4sbjUtxp2MD1BfeR3vOIigSGNp4v5jR
DWgKp/w/d+k3Ly6Dunj6Ty597OLVxda437sWQBe70coLA4VWGMo1RlemBSpiZoIf
vgDRoc8jLuwFJB9+CYJjr0AU8yrykximUbXkTdRkvISqxHmoibEbPRdrPtLIn4JL
Ai4uJtFwcwoNt/BpuDmFbl7K26DuP7/8fnsqyXvTSd6XRqpDm+j7h5jCVuxXbzw2
C9Bf/ngC4CEQGBER51wI+auiqWswkdqVKdQlTaOe7gL3W9I4DuMXxA6ANKfm4m43
w+6V1q1GR7w1dKlMFNCwtcDAf6Av8C99gq516CuZ8+DJ9rOcfufKGwBaWJfDUOZL
zzVGZ4YFymNmISXcHfEHX0DSoReRevRlpEe9gqzoV5GTsATZxxciO3zqSF4Yb6Q4
YuJI+TEaPnuShhviaPhSEg1fFdBwWwYNd4lNhmU5xqNSthGkkNBIj5AGe4Skkkqs
FCoJSXXZJB/KIlngx/Q3tvHzoOD7Babw0wCAIREZxX5Br3ZFkrQ/njrUSdSlEFBX
W8Z0dWei9ag2hYuBTC60Eh76cq1xr2cjbrQy8/rOwhcgj+fgejqXVRVxoc61wL32
Nf+ZYq5qARQF1v9avRdxMFS3CEAxe+mpGDw1HYO5xujKMEfpyRlI2L8QsQdeQMrh
l5Ae9QokcUtQmLIUOUfmjuaGWYwUHpw4cuoQjZQepeGqKBo+F03D9bE0fCGJhi/z
mYtvz6DhrqyJw1IJb1hZMGVEV+Y0cv2c5+it86+M3qp/afRGzaLR/jNOt7SF9v26
PJu+/hxj5VAuSa+LqDvsM1rP1gCWj9o1MP5LiB7sFbC6fJBq1NHUqU2iTnUadbal
cKTdOc+OKBK5GErnQifmsnSwxfixi6kFFOfXoJM/DdoUDgYyuPoXQd/vmApuNC6F
qugZtno3efBOL+RAWzYHQCR76c24WemKwTxjKCQ8VMRMR2LoszgavBhRe59DzP7n
kXr0JfD3zh1NCzYfFe81HCkKp5GKYzRcG0PDF5NouCWVhlvTabgtnYY7hROHeyRW
w+pS15E711ZjWPMPjGg/xUjXetyo8hjVFUwZ1WVzRvvFE0YGRAYjgyIaGZLQiE5I
w+0JJGs+SRcaIqmy/gjlNkZS2vmjFPa8Ezk9JCE3+j0AoFcMVQSSlyyKugcTqbMv
lTo7k6m7Xewy1BXNYTp/IsYnQFs0Dfd6GKGH9tJadFe8ie5YLoYEjO+wRsLUC9rT
s5/qxWtK5v4kxOsr+FO2wPX/fbCjuG0VBvKNocnhoD7pGYiOPovEiBfBP8J86ZnH
Fo/yg21HUwONR4QhNJJ3gEZOHaKR8kgaro2m4aYE5uI7sixGNNXPjd7VfoZ79/bh
/n1/DHeuR3/R7FGN2HhEI6SR/iwa0WTSSFsC3T9/jO6V7qfbQl8aiP6WFHv/Qe3b
/g81bt1I1V++TzmmHNpERB+xL4HX2TpgHvv84/3SroFxB8DDegGfjeTeepikujjq
1PKpozuFuq4kW8nbUqaN/mQAlMvFzQuv4V73Rgxd/b/tXWlYlOfVvhUEZ1hcCO64
1I1oo7WJW8zSNF+TJhpzmVg/+yW9mqZXrqZJmm6axGjiFjUYQUQFkXUYlgFkXwWJ
xijghopiVLZZGGZjFhBEZN45/TFn8HWi3b66NfnxXvzhD9z3Oc997nOe8zgvedTn
zyC93PkkrTnXdRRInM/Q/qdVvKh00+2XkK7MmeK7zj9FRK4HKzeQpcSXzIXedCYl
gHJ2TqLoz53qXRE5jzIipjnStwxyZH/uIRSGQiiLgPDVHtirYmE/mQj7WTnsF7NH
OMznXqSurgi6di2XenvXUWf1ow5zgZdgzYNgzYNDmYLeqp3oTP8E+s2/xaX/+ykq
fzQJhUGBUHh5IgbALgDhALYB2AJgLYAPAbwL4NcAXmET6AneIjKFt4vecofAnSSA
BMDQk1uRo49Dsy0VjZoUNDekQHU5J7i7JdGl9rnmPxB00xBnc/UialSMIXOahGxZ
UjLnS8nIJPj/isKehsVk/HLczSqeo92Z4uMY9OPUfnActRd7UVPWYDoQM54SQ2dR
fOhskkfMpcTNEx2ytT6CYiOE3BAIpeEQDkbCXhkL+0lZP6Eucwi1Hn+G2tv30pUr
x6iraydZDs906LMgtGVDaM3E9epdsCavQuP7S1A5aRQUAKIBRAKIALAdwFYAmwGs
B/AJgFUAVgL4I4P+FgO/jLeK/5Q3i0/nraKjRfsDBtyVDMAk8Abgl/FXLFdGQd0u
R6M+Fc3NqVDWpQXqGmVDHJY0bgDlS8lQKKHuup/1GUP6My9T45HnqVk+lKwKCVmz
pH1VgaFIQpavp//rRk3lTNKJBF1rKUd7+VAi0+s31tQ3LiJriRcZ8qVULRtNih2P
UEKYE/SETT9wxK7xEWSfQkjbACEnBEJJOIRDUbAfT/RyXMibRFb9O9TVdYGuX79A
9pZfUVu+r2DOgaBJx7WKbdB//hZq5k1DJgMdziB/BuBTBvivAP4A4G0Ab7K3vxzA
UrZ5F/FLIj9j1+8JXhnzI1b+QSz+hrDnL73dA9R3kgCezLqH6sJxzBSPJmMymlpS
obwoh6Ypd0pPa5IzxVtyndFtOjCGepRL+66A604vpm/Kf0KqJD9qz5CQNUdKbfli
Ejz8j6O9fhEZDgTdbMeWOaPdWj3dOVVLRERyspYOJkuRN9WmBlDe7skU88WjlLRj
DiVu/oFDttZHSN0AYd8WCIWhEPZHQDgU1U+oTpLQ+fwZpNdvIrNZTx0dB8haPdeh
y4JgyML16l0whf0epxdMRxaAPQB2cvrexBG9ksF+i4FexiD/nM/xBQzuo+zn/5A9
/Sm8PXwiR3oQR/swVv1+/P8f+Pf2BtxJAniw+TDo4Dq8q9kLtUWGZn0qmhuTobqo
GKq/FOvvMCukZM3m6C6SUsfJeX19+Y5Lr5Dy2CI6V7SANDIf6kiXOEVhnoQMhVLS
F0nIfGjKbbtuzvKNlTyf7YbyoUSd7914i+jkHLKVeJE6x48qYsZSbMgMitz8Y4pc
N8mxa6WvY+8qCPK1zkjfHwHhSEx/4YzCl5oOzKH29hjq7Oyk7u5CMldMduiy0KtW
4Gr+Z2h8+yWUPeSPeNGZvRXAxluA/jqf2y9wNM/jSH6YwQ3i9m0gz/UN5qj2Z5B9
WeBJGXCx4dPvjl4N+yfLQen8qRheG4ZzxngoTcloUqdA1ZAK1YXUsd3aJJHQK5SS
sSSAetXOeb2rDTdGtc4XzaeWJB/qyJCQJVvSVx4aiiTU9uUEHup4lUwHJ3wrxevK
JGSrfoSIahj2cLKW+pKlyJvOpAyn3MhplLRjDiWFznDEfTrYkbDGQ0heDyFzM4S8
bRDKdnoIRxL96XzhY6TXx5LVaqXOzhwy7h8vaDNwvTEFHbIPUfeLp1Hk2R97+fx2
pfU1DPh7AH4L4JfcsPk5d+vmM+DBvPxxFIPtatqIQfUQOXm3++7Oiph/0Rr2LfgI
f1LvhcYmR7MuBUplKpQnY7219bKhjrY0Kdmyb6R388GJfUObHZec0zlNVQuprngB
aZN8qD3dSQJTnoSMnAkMZYHOAYr9N0B3j/arx2aRtdiLmvb5UemecRS9ZSbFh86m
6NUBjvg1HkLqBgjZIRCKt0OoiPQQKhP9qTZvFrW2RpHJZCKbLZ/0pRMEbQauX0qC
LfovOPvCHBTcIrV/DOB9Bny5SJzN5zQ+VSTQhosA9+NI9halbY9v2bei764/GPHv
jooNkiKodjuqjAlQmlLQpE2F8lw81DVxAdYWmYSuZEr73hgwFEmp/dhs6lX94mZR
WLmQzhQ8Ti1yvz4StOVxdVAqIX25s3yzHA0moiqGPZKs+/3IXDSQapJHUObOaRS7
7TGKXDPSEblygBC/Gn3Al+7wEA7H+VNN5nRqadlCRqORLJYjpCubKqjS0VOXgPao
P+Hs87ORz6BHAAjhUmylWyn2HJ/fszi6x7EwCxA1aKR8RrsAdwe933/ygah7RQAP
/sMeivk9XlVFo8UmcxpD9TKoz8aj5WJiQE9bqrPca2NBaCh23hh2bQrruPQKGc6+
TJe/fpFq8p8ktdyfbOkSsmZLqC1PQqYyCVHbr26c7TXzyVbsRcpsf6qIHU+ysB9T
9PqJjqgPfYTojyAkrIGQvB5Cdkh/oTTSl76WTaSmpvdIp9ORzaYiS+VcR2smehpT
0ZH4AWoXz0cegN0AwjjK1wD4M5/jr3Faf44VuRj0UezEDXKLbk/31H2nwb5XBHBp
AT8Aw46HIEYfB1WbHM0qOVSXkqA+Ee3Z2pzo77AqpGTJEin90oBvDWvqTi+mhqML
qaboJ6RKCSBr+kCyls4m6jYRUQHZyoaQpcibTicPo4zwYNr7+UzH7g8HOWJWeQhJ
ayGkb4KQ+0U/YX+UlA7Hj6X6E0tIpVJRa2srtdUto+Y09DSkoDPtE3yz/BkUe/ZH
FIBQUWp3gf5LAItFqd1Vgo0XRbqr/z7QvQ17N0G+1wTo2y0MYNDT0zH18k6cakuE
Up8EpSoZyto4aE7s8TKpEyTO1O5qAhVKyVAa+K3lUJa6JdRYuZBOFT9LjamjyFoU
TB37vUlf4EtfxY+l2JCZFLZimCP0jwOEXSsgxK2GoNgEoTjCmw7FjaQLZU+QTneY
bDYbXbmyntT7JNfVClwt3ILGt19Cue9AxLByDwGwDsAHrNrf4DLtBVGkT2GlPky0
mMFbLNruF7DvCQHcVssOBBC4/TdY2LgbaksC1LpkqC7LoK7Zi5YTu73a9fKBN9u/
hRIylo+8aWmkSxM0HF1IZ8qfp4v7gunEvpmk2B7sSPjUR4hbDUG2FkLKBgjZWz0d
xbuG0BH5NKqvDyONRkMmUwEpc4b3qtPRfSQC2tWv48joACSxkPuCXbePRKAvZePF
daa7zJZABl08ZXNPUvl9TQC3mcFBAEZmf4AV2hhoLUlQqWRQXUyAujoS2rNR3p2m
5IFk2ydx7hTIl5ChSEKm8jE3ZYKOS0uo7dzLpD6+iKoSRwhlOzyF3K0Q8rdBKAzr
L5Tv8aPDCeOp/tyvSaVSkU6no9ZDcx1NqeiujYc1/F2cenQyMtiNC2Nf3aXe32TQ
n+P0/oioRHOldqnbhM0DA/q9IkDf6+McNeMOb0SELgYtxkSolTKozsVAUxUJ7fko
r25z6kBnDyDvRiPIdCCIelVL6bpyKRmPzBQasnzsdamwn06CvSoO9sNxEjqaMIxq
ixeQUllFWq2WjK1/pvqUAT2Xk9Ap/xgXX3kCxey3b+c6/WOO9N8AeJXt1fncSJnE
pVogE9fnNiLugQT/rhLAbWJIyv/U8Se2QqGPQ4tRBlVTItTn46D5KgLab/YMuGZJ
kzhdwuwBgi6rn701B3Z9aaBdWzjArsmHXVMAu7JggKOpaDg1FE8nnW4bGY1GMpsP
UXPO8F5lGq5WhEK9YhkODfZBLIO+GcBqbqa8yWf6iwCeukXJNlRkqT7QkX5fEMDt
KPAFEDBsEIJPb0OpMR4aXRLUTTKoTu1By8Fw6C7vHdDTJofdrIDdkAm7Lhv21nzY
W4v72/VfDiZ9xTjq1S6jnp4e6urqovbahdSUhu7aOFjC3kHNrElI41p9C4u5vwD4
HSv4l9hrn83++oTblGye/43A30sC3OQQAhg1bQxmnQ/HV6YEaAxyqC/FQ30iCi0V
O6Cvj8Y1sxz2NgXsbflSMlYEkfXYbCIq4Qem08mQ79vTkoHO3I24/NqzKAEQdZt6
fTmAhW4KfoxogcKNcen7XL0/sAS4RSYYDGDM48GYe2EHKk0J0KjjobkYB/XxeLRU
Jo6yqDKCyZY5mmylDxNdMzuNntPzBWMOrp6Nhf6zN3E0KBAykYpfx87c23xTZhE3
Wh7jJsvYW5RtD/x5/qARwDVAKmEfPOiZ6ZjzzQ5UmRKgMWQOV9sMzaTVaulUxiPX
Gvag11z6VG9bgbRbm4mOjLU4v/hx5IpU/GaRin8DwBLRcMRUjnSXmJO4+e3fGcDv
GwK4TxEzMKOenoZ5F8Jx1FTybIs+V2poSoFBvgpfL30S8ZkrcGLtMpSMGIJdHOkb
RSreBfpz3D//IZduLjHn6+bIeXwXI/6+IsBtMsHYWRPw2JlQKJLfx7bJo/Ea98zf
4JT+B26tvsOl2/+yin9SpOKDuMvm7sz1/y6DfV8SwL1ryKCNZIE2h923/+HvRT7P
X2Bn7mn+HXG0uxs13wP/gBCgv2iMzJ9Lsskc0TP4pusMbrrMYNAnic52v74br98D
/uAR4BZE8GOlPpJBHiH6AkX1uo97iv8e/AebADddMuVsMJh/+ooGHb3+202a7yQB
3EjgwSB7ipT7Lcekvgfz3/v+BnZNazARPCiIAAAAAElFTkSuQmCC
}

;tool.png

img2: load 64#{
iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAYAAADDPmHLAAAABmJLR0QA/wD/AP+g
vaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42uyae1zMad/HrzlUIiLZ
SJsth3IosoWKHDpIrIjsqrZsHhIpq1XrtGiJ0GhFVCoUKTxY0a7WIeWwlm3Zu2xK
Ok2jpmlqjGmamvncf9xTO43pRHM/9/M883u93q/X1DTzu37f7/v6Xt/r94sAICr+
/6IKgkoAVRBUAqhQCaBCJYAKlQAqVAKoUAmgQiWACpUAKlQCqFAJoEIlwH88usYm
+3WNTSp0jU3u6RqbpOoam+zTNTZZq2tsMl/X2MRM19hEW5Xs/8MCDLa0C9QzNUcX
NOiZmv+pZ2qeoWdqHqNnah6qZ2q+XM/U3FbP1NxAz9ScqhLgf+MFEELRWvJfW/TN
LPGBNOubWZbqm1ne1TezTNY3s9yjb2bpp29m6axvZjlO38yyn0qA/8DkE0IoGj7B
Zww/tWUbfmoLJfJIJUAvJKy3k08IoWp4Bv4ywsY+x8h6NpSIyMh6dj+VAO+fKAoh
hCr7cy98L5UQQlP/3D97uMOi66PsnKFk7FUCdAMTh4XrTBwWpqq7rbSWSRSVEEKT
ef1BEsh8L119ycqHOgs87po4LISS2akSoBPGu7gPGu/ifmm8izvGu7hj+IIvYtRd
fdLUZn02hBBCJ4SoyUCXEaLHMkg/QyOEqKm7ej/RXOjNHO/iLmk9t5K4qRKgA8xd
vaabu3qVm7t6QYZaTRePv9RcPJhqTksXEEL6yKCuSISeln9CiLqay/Jn6vM9YbbQ
kyl3/t7mrbmrF10lgAwW7r5UC3ff7yzcfZst3H0hz3g3n4fqc5dBfe4yiZqDWxzV
cNQQQkh/Qkg/KX0IIRpSGbpVEWTLPyFEQ81p6XP1ucswdrH3Y0Vj6GWm/pv7Jkpv
Ns+9KoCVp/9wK0//O1ae/uiMoQs8itXtF0PdfjHU5iwqolvNciSEDCKEDJSRoU93
JZAToI/anEXF6vaL8Ymr1+OuxtILfKPMxFss9dWW65uoyhThvT84bUXQwmkrgmqn
rQhCV0zxWd+gOdsVajMXtNJMt3aIIhqaIwgheoQQXakM3RJBXgC63fwytZkLoOO0
tKI74/lArihxxlNN3Feenuzh7yXTM/V4iVSqALarQ9RtV4cctl0dIrFdHYLuMsHD
v0bNdi5koU9z+AfVeKwTIcSQEDKUEKIjrQia0h5BoQRyAmjSbZyYarZzoTFjnsRm
1SZxT8b1HnCUkXy6pd0guo3TGR1HN9is2iSe5vt1kMzyqC691l6XoEd/bBewzcQu
YFueXcA2vA9DnZdJ1KbMgSx0q9lC+oQp+wghxoQQA0LIR9JqoNVRNXhHAKvZNdLv
grVfCPN9x9cDxvfmrKd/amdPt5pdrjZlDjSmOmDGuq0tdgHbYLPqG4Z0QvSVikAn
hFD/RwSY8/X3X835+nv+nK+/x/tit/67Js2p9qBPnvEOtInWv1I+Gj5TWg30pNVA
S1oNFElAk/6+L81iOpdmMR00i+n4MnjLK+9vv7+1eOOObOfA7Q/s12/PmxW4o2R2
0C7eh4xdltlBu/w/ZG1u/Qx1tFkfmsX0SPrkGWLZWFj7fVvbeq6ZAdvP9tUZoiOV
oLUqUv5tAjiGRvR3DI046xgagd5gkk+QhG4+DYqgmU19Qxs5bjMhZBQh5GNpNRgk
0xvIrod/C2A29S3NbCpoZlNx6PBh4Y0bN3D16lWkpaXh1KlTiI+PR2xsLD/6aExR
eFT0r5v3R/0SsIdx1XvHgStLtkZcm//tvptOIXsfO4TsLXUMjWjq6hrsN4Wnvs99
DNlZTxtnOZFmNvWpojiM9/CvlT3fnI3f3xw+ccowmcnQaw1hp286b4+yct4eVey8
PQq9yXCnJaCP+7RDaGPMb1IGDJpGCPmEEDJMphpoyDRGatIZoUUbO7mJamoBqukk
bN0Vxk9JSYFAIEDr0djYiLq6OlRWVqKwsBBPnjzB3bt3kZmZiQsXLiAlJQUJCQmI
jY0VxcTEVByIOvzHlr0H72wIj7y+ctfBH7/YfuCq69b9mfO2HMxx2nLwH05bIv8g
hAxQ0LRSupX8sZOD6eM+bezo+oc7uTXLx8xp88E880VeI6QxoCpdgPlhMZvmh8U0
zQ+LQW/juJUh0TSfAuroCW3Qxpi1gzp6fC1Vf8Q6aTUwIIQMkQm6pjTwmoSQAdTR
Exopo8aDMnIc1n0TwktMTMSTJ0/A4/EgFAohkUjQ1SEUClFfXw8mk4kXL14gLy8P
ubm5+Pnnn3Hp0iWcOXMGiYmJiIuLkxw5cqQmPDw8VLp7GdDZzJRNPNXIZAR19IRb
8tcqTz8La4Vxc9l5pHi6/+ZxrZVHaQK47ks477ovAcpi5sbdf9JGjm2iGo3B35i0
QTM2bUVCNRx5kWhoTiSEGKprDTbQt1pkPWLWV8uN7Fd9Z+zkf3qk09r7Ro5rhIMm
O4FiOAoeq/x4J06cwP3799sSWlJSgpcvX6K4uBgvX75EaWkpKisrUV1djbq6OvD5
fIhEom5JwmKxkJycjBs3bkRKG9dh0qa1r3wVaJf8T8Z40oxN62SurVNcdh7hK4rd
wvD4aped0VZKFcCNkbzMjZEscWMko5eRLN5zLC4uLu7+5YyMH2nDjcopw41AGW4E
ioERKAbGoBgYg/rxyHboTHL4dZTz2sox8wNbxswPhCIMZiwHGWaIee6fv4mLi0N2
dja4XC6EQmE7mpqaIBQKIRAIUFdXBxaLhfLycpSUlKCoqKiN4uJivHr1qk0ULpeL
+vp63Lx5EwwGA6tWrTpMCJkorVBDCSHarX2B7FaVMvRjHYqB8Vn5a+qKGYE7XncS
R55rRMLc3lgGOnzDPTr9sHt0OnqRppVRp3anpaWV8/l8nD59Gvv373/1ibnFQ8pH
+qDoDQdlqAEoQz9+BzVDE4HJ/PUS0wWB6Igx89aCqmeIaQ5OjbGxscjKykJtbS2a
mpq6jawojY2NEAgE4HK5YLFYYLFYqKioQEZGBhgMBjw9PY8RQuYQQiyklWCIXD9A
J3oG9kTPoJwy9GNQhxn2iLFuK2q6iufSH859+cGP1Tt6Y3nsFbXlsVceLo+9gl6A
s/1EalhqaiofAEQiEfLz83H16lVER0eLvvD0ekAGDXlLGawHiq4eKLpD2yCD//Xz
SPtVZWZu29ERExZvxYBRVjCZbNly7NgxXL9+HdXV1RCJRD2SQJEIrTIwmcw2AeYt
9vhVXUtnBSFklrQSGLRtW/tqaZHBegyK7lCx7LVQhwzrNkMm2zR1I66Sz4/9d6jS
dgFeSZmGXkmZtV5JmXhfPBOuFUUnpx2/fft2WycmEonAZDJRVlaGe/fu4eTJk9i5
c2epruEnFUR7EIi2DshAHZCBg//1WlsHWkYWDZO/OIiOsPh8PwytPaBnPBIxMTG4
fPkymEwmRCIRmpub30EkErWjMxFaJZAVYPbi1TCevqLZyNb7rv7EBQHSpWAI6dff
hmjr/EkGDoYiKIN0uwVNVw8eJzKauxnnKK+kTIpS7gP4pNxy8Um5JfZJuYUek3wz
99S585kvXrxo10xVV1ejtLQUFRUVYLFYyM/Px5UrV8BgMIQOzs75pK+WhPTrD6I1
AKRf/zYmLYmomeodD0VM+TIWFksPNPfRHoijR4/i/PnzKC0tRVNTk0IBOhOiIxHa
C7AWo2etxbi5ITB3DcMkt4jKiYvDD/TRG3WYaA1AZ1D6a3eLRQdOV/cg3mk+KbfU
lXIn0Dc9d49vei56wqrU25fOpacXCIXCdslnMpltDVVFRQXKyspQXV2NiooK5Obm
IjExESEhIa+0Bg1+QzT6gKj/jd64uTW2vucwfWX6O9j6psH2q3Po+9EoREVFNaWm
pqKoqAhNTU1oaWnplI5kkBehqqoK165dA4PBwKzFQRjrsAnmC8IweUkUpnjEw2bF
WUzzOllONPqIiUYfEA3NDqH06dslM9ZtK+1h3G/5pucO6HUBVl/+jbr68m+3Vl/+
Dd1AHHwhO+nUqVMc+W1UeXk56urq2gRoaGhATU1NWyVgs9koKCjApUuXwGAw3lha
WZUTKg1t0NUx/avzb2b7/wx5Zq35CbPWZOJji2XNe/fu5SQnJ6OgoABCoRBisbhD
OpNBXgIWi9UmwEy3EExw3oHJixmYujwBtj5pmLk6A7P8rkNb3+w5odHRJXS1Thk9
Z0FFN2MuS6BSngX4X3uq53/taZX/tafoBMHui1mnr1271iy/f66oqACHwwGXywWX
y0VDQwMaGhrA4/Hw5s0bMJlMVFVVoa6uDkwmEzk5OThx4gTWrFlTrqGh0UIIASEE
I639qhzW58Ix8D4cAx/AMfABnIIetr2esiyet3Xr1oqTJ0/i6dOnaGxshFgshkQi
eYfOZFC0NLx+/RrXr19HZGQk7Ny2YdJn+zFlWTxsvdMxa1UmHAJy4bj+HiZ9duD3
1vF+CH11hrzpIt6KOKm0p4EBWX/ZBWT91RyQ9RfkWXfjefWxSz9d/f3339vNeg6H
AxaL1S75rbNfVgA+nw82m42qqipwOBzU1dWhoKAAFy5cwN69exvGjBlTTwiBuqa2
2HPH7yLv3fnw2fMXfMIL2+G58w9x0IaNxQkJCXj06BH4fL7C5HclhKKKUF1d3SbA
vC/DYe99HC5r0uAWnIUvtj6E9+58eO95Dq+wZw0UClX0gQIUW1tbn9t8NKl47bU/
3iqKeQc8U+r/A2zILgndkF2CdtwuLjx18Uoem81+Z71ns9ltCZUXgMfjtROAz+dD
IBDg9evXYLPZ4PF4qKqqQnZ2No4fPy7x8PB4TaPR4OwdydwQXYxvYisREs9CaEJN
G8HHy7EhZPeL+Ph43Lt3DzweD905FIkgL0FNTQ0yMzMRGRmJpX6HsDToLLy3/QS/
fb8h6IdChMS/RmhCDTYncTBu2pLC90x8pY2NzfWwsLCijIwMFBYWYt+hHyRB5++8
fifuimnekF3SR6n/ERR8n3k1+D4TwfeZCMl59SA28SRTPqBlZWVgs9mora19R4DO
ki8QCNDY2AgOh4OamhrweDw0NDQgPz8f6enp2LVrV/2ESdMEu06WSiLOcxF56S2i
fmzE0cssHE//oykuJVOQfCZVmJSUhDt37oDL5aKnhyIRxGIx2Gx2mwArguPgt/Mq
NjIe4LuEIoSn1uDQj034IaMF0ZlAcNSvL3uY+NczZszI2r1796ucnJy2sbx48QKx
sbGIjIzEltgznK+zX/FbY98JVkoVIOQxe2DIY/arHbnFv1y4eFEgGzyxWIzS0lKw
2ey22S8rQEez/+3bt+0EaL1dy2azUV9fD4FAABaLhdu3byMmJqYleMteZkRUQgkj
6ig79dw58d27d1FVVdUukYWFhaitrcX7HPISSCQS1NbWtgmwzO8Alm9IhO+2S1gf
kY1vovOwLeElvjtZhp2nmdhxqqJFS3sIvxuJ58ycOTNnz5495Q8ePHhnHIWFhUhL
S0NSUhKioqKw++AhUfDPz16FPGajE/yUKsChQ4coiecvHcnJyZG0tLS0DVYgEKC6
uho1NTXvCKCo+ePxeB0mv/W+vUgkApfLBYfDQWNjI/h8PvLz83H79m2IxeIuE9na
BL7v0SpBaz+TmZmJ48eP49ChH0TB2yOFX248Bs/Qc/DdmQH/iGwEHLyPwEOPEBT1
GNNdg0o7SXy9vb39w4iICOajR48UnruoqAh5eXnIyMhAeno6kpOTcfToURw4cABb
kn98EZpX93bzMx4UEKtUARwdHamJiYn+4eHh1SkpKXj27Bnk9/tcLrfD8i/f/CkS
oHXr1Xonr/WZPp/PR3Nzc7vn/fIVqKGhARwOBw0NDWhubsaHHq2PkzkcDiorK/Hy
5Uvcu3cP6enpOHbsGHbtiRT6fXsUyzaewuebUuGx+SK8tl7GsuAzPEIo8ol/4+jo
+Hj//v2svLw8hecrLi7G8+fPUVpaipKSEhQUFCArKwsXLlzA2bNnERcXh8jISIQx
DnO+fVBZuP25ELJsy/8nM+cZFtW57fGl0jtIE1RQ0ahHE2M0J5bExGtO0GBQUKyg
WKKoWLAAQYpKFekIgjCIYoRIBOwBMUDEQiCWKIhIBhyHYSgiMCBlZv7nw8yeCzIK
ibn3nP08/0+Umb3X713vau9uLx7ozMC7zLJpTJkyZfTevXuPHz58uCMjIwN//PFH
n5t58eLFG90/s/f3BECe8bu7u2X7cHNzMwQCgWxVMl29pqamN0Lxd1wCgUBWuOLx
eGhoaACXy8WDBw9w+fJlsFgshEVEdu/xiRat3J2ARTuTYeNyGiMnzG6WGr59/vz5
d0NCQmofPHgg9zMqKyvx5MkTVFdXo7q6Gmw2u1cru6CgAJmZmUhNTUVSUhIiIiLg
HxAg+i6j4JZ3heiVTyUg1StLzwjlgUwOvctAo6p0XGv09OnTrdzc3HIjIyPF2dnZ
4PP5vW5MKBS+FYCexpcHAGN8Zi8WCARoaWl5J9f+Vz0BUxBis9ngcDjg8/ng8/mo
qKjAL7/8gtTUVMTGxsLbL6Rzza4QfGrnIbCysioNDQ2tLy0tfaPhKysr8fz5c3A4
HDx79kwuAE+ePEFxcTEuXryItLQ0nDx5UrYleIfHlLsVNzz2LOuEZ1knNqTfnjGg
SaV3AEBJOp1jLG2ETJ83b94OT0/Px3Fxcbh16xYEAkGvG+3q6nqr+x8oAP/Ji4kJ
hEIhGhsbUVVVBTabDS6XCz6fj2fPnsn2bRaLhaNHY8Sv90KYi81mo6qqCjweDzU1
NXIBYOCoqKjAkydPUF5ejkePHiE7Oxtnz57F6dOnER8fj9DQUPj5B7TuSs/Pdr/3
smvL5QfbBzJD+C5jzUOk82na0inecUQ0nYjm2tnZHTlw4EB9SkoKHj582MdoHR0d
fQCQF/z9txm/JwAikUi2PbW3t8tiA8agXC4X5eXlqKio6PM/mEZYXV0damtr5QLA
gNUTgPLycpSXl6OsrAylpaUoKCjAuXPncObMGbBYLERGRiIoKAiuR6Lz1n3/80Hp
UK0WM038dwPAzOYrSz2BkdQTfEhEc/SGjd5os8a5w88/AJmZmaiuru7zINrb2/sA
wKz+1/f+/293/2cgYHoGHR0d4PP5MpddXV3dqw7BxA+NjY2or69HXV0d+Hx+vwA8
ffq0DwBlZWVobGyEWCyWpctlZWW4cuUK4uPj4evr+3TSpEkfSu2iLoVg0P8FAArS
SRhtKXFmRDTeZJpN0shZqzH2s5Ww37wbYWFhyMnJQWNjo1wQegIgL/j7u1Y/U2Ti
crngcDgy1/1XMwamUtizddze3o6WlhZUVVWhpqZGttqbmprw4sWLdwKgsrKyz9ba
3NyM+/fvIy0tDf7+/h3Ozs6XP/jgg5VE9JF0WklXuh0MDADna+WD+nnLBzOXP6TH
eLaKlDRdIjLSsZhlaTLbUWz8yQoYfmSD8XOWYauLO+Li4nD79u1eaSMzdCEPgL9q
/ObmZty7dw/nz59HYkKCODossCv8kIsoZP96HN63DEG7rBG4cyECdy5E0J6lCHZb
jVCvTYgIcEVMxGHEx8cjKysLd+7cAY/HG9BnMgAwE0QCgUAW8zQ3Nw8YgOrq6j4A
cDgcdHZ29rnHkpISpKSk4NChQ20ODg45BgYGbkS0gYhsieh/iGiy1AtoyEsN5QKw
5fIDCznGVyYiUyJ6n4i+JKLlRORMRAeI6CgR/UBEuUR0j4i4RNRuPGM1d/gXm2Hy
2ToMm2UPo38ux+zFmxBwOKQzOTkZTO+Ax+O9df8fKAA8Hg9Xr15FzNHo7iDvXS8D
ts3rCnQwR6CNAo7YEMKWECKWEqLsCEeXSbWcEL1Moqhlkp+HLiEEL1HEYYcROLJl
FkLdVyLEzx1JSUnIz89HbW1tv16GAaC1tXVAAHC53F4AsNlssNnsPhkVU2MpKipC
cnIyfHx8muzs7LLU1dVdpIZfQUTfSEfVpkrPVuj8KQ/wbVbxXHV9Iwciuk1ET4mo
5a80NtRHvF9nvtANZgv2YKTlTgz/chtMv9iItdtc6/Pz8wEAra2taGxsfGv03x8A
d+/eBYvFEvt57avb7zC9xctKAQGLJAaPXU5ItCecWktIXU84u5GQuYlwfjPhgtP/
KsuJkLmZkLFJ8jtn1kv+huVAOLZSAkbwMi0EbpqBQPcNiI2JxvXr199Yau7o6OgX
ACaFZADgcDgyAF6+fCm3pnLz5k0kJCTAw8ODb2Vlla6goLCPiLYT0VoiWkJElkQ0
S7ryR0mHVdWZbGBAAKw/e1N1ddLVfUMUlWqHKCrhz2iwgiIGDVGQSEEJZot9Xo5a
4gvzxT4ws/aEmdVeRERFdzBk19bWvrEA1F/0f/fuXRw/flzs7bqt2tPWuMXvG0KI
rWQlJ6wmnHaUGPPiFlXk7NBE3h4dFLoOxR13A/zqYYwST2Pc8zLGb56G+M3TECUe
+vjVXRc3XTVQsFsRuTsIV7YSsjYTfthIOLmGEL+SEL6U4G+jBt/Nc3D4oBtSU1NR
Xl4u9zv2BwCTBTAAyCtm1dfXIz8/H3FxcXB1da2aO3fuCSLaJfXAG4jInoisiWge
EX1CRJOkK99QerhUiYgUBpwFENGgNSm5R3VGjNmmqKqBPyMFFfVeMprt8LuFQyQs
7MMxZlUI5m8NFmZkZMj2zL8CAI/HQ3p6OvwOHeDvszXn+VlL3HbMCsIJB0LqegVc
2KqJXBc93HA1wm+epnh4wAwVgRaoDh4HXuh48MMnoCFqIl5ET0TT0X/gRdRENERO
AD9sLGpCx6AqyAwVfqZ44KWPInc1FLgQsrcTzjtJPEmiPSHSjuBvTThoPwH++7fj
1KlTePz4cR8D9gdATU2NXMhra2uRm5uLqKgobNq8uXXsuPGcwQqK7MEKSs8HKyjV
D1ZUbhmsqNwxREkFgxWVk4loRo+Vb9jjqL3im0rDbyz1rojL+mZlwkV/ZU2dEhUt
XQxUypo6vaRmaM4buz5ONG59HMY6xsLdN1TAVMSYnn9/APS87t27h2PHjon3bVn2
xPvrQd2hSwjxqwjfryOcd1LBdRcdFH1nhPsHRqDcfwyqjoxHTcT7qIuZisb46XiZ
+DFakmagNXkmBMkz0XZyJtpPSdSW/AkESf9EK2s6muOn4mXMZNRHTMDzI6NQ6T8c
j7z18Ksb4cZuwrUdEhjOrCMcXyXxPIfWTELgQXdxenp6n8Dx1atXMgAaGhp6AVBd
XY2nT5+Cz+dDKBSCy+Xi6tWrCAsLw6rV9jAdYQYFFVUoqKhBUVVdIjUNKKlpQkld
E0rqWlDW0BIrqKoHEdF4aSbGHFZRe9v7Bd4IwHvzrFVXxGVVmU75xFZ9qJFIfagR
BiI1PcPe0jXAlFVBZTO2ncSXO5PASkoSM9Esl8uV1QHeFAT2vG7cuIHw8PAulxXT
2AetCME2ElefsVkFeXv0cM/bBOyg0XhxdBJa4qah/eSnePX9XHSe/Qpd5+ajK2MB
ujMXQJj1NYSZCyDMXABR1gKIsiwlyvwKwh//BeGP8yD84Qt0p36G7tMz0ZX8MToT
pkAQMwGN4WZ4HqSPigOE3z0Jt/cRcrYT0jYQYpYTDi4cAi+nrxEZGSG+detWr5Xd
0dHRBwAmA3j48KHswGpERASctmyFvvEwqaE1pEbWhrKmDlS09KCqPRSqOvpQ0zWA
mp4B87xFylq6rq+dp2TevKIsD4K35fdKtuFnji8KTo7WNDBN1zIagdelaTi8jzQM
THvIBOr6w2A21bJowe5U7PFniQoKCmQpTH19/VsB6HkVFBQgPDy82335BF7AIkLs
CsLpdQq4sl0bt78zRtmhUXgeNhmNCbPQfnYhOi4sRVe2Pbqvr4UwzxHC6/YQXbeH
KHcFRDnLIL5mB/G1pRDnLIE420ainxZDfHURRJetIbq0EKLzX0OUaQlh+jwIU+eg
O2UmuhOnQhA7EQ1hI1Hlp44yL8KvbhKPcO5bCZBBiwgedqMQ4OstzMrK6hUotrW1
9QGAOSNRVFSEn3/+GWlpadi/3xO6BsZQkRlcH2q6hlDXM4LGUGNo6A+DhoEJNA1M
X3/+QlXtoTullVnmXQs6PYpBvSB4GwCKCw4c/dImNOXV6NlfzdM2HS3QGT4GOsPH
QNt09BulZTKqh8yhNcwM6oamtXYupxqiY+KFTOpXU1MjtxTMANDT9RcXFyM6Ohru
9tMaAhdJUrYfNqogb7ce7vuMwLOQiag/PhutP9qgI28LRCWuEN93Bx55Ar+7AyU7
gTtOwK2NwI21QKEjcGcr8OtOoGgXcGcncNMZKNwCFHwLFKwD8hyA3OVAti1wZTFw
cSGQaQmkzwVSZqI78QMIjo4DL1jiDe55SLaGy1sJKY6S+MDTWhMHPVw6U1JSelVC
X7582asMzKSApaWluHHjBrKzs3Hs2DEstl0qWeFDjaFhYApN45HQGmYGLRNzaJuM
grbpqF7Pvod9OtV0DZ2kweAYIjIhoqHyPMFbASAiFevAxOcLfKKSdEdYHNEzHw89
8/egZyaRrtk4mfR6SHfkWOiOHCfRiLHQGW4Bp71BZZmZmTJXyOVye3UDXweAuTgc
DhITE3Fw1/IX/taS3P379Wq4vtsQpb6jwImahhdnbdH6iws62ZHo5idAXBcP8bMQ
oNIPeOgGlDgDJTuAcj+AHQZUBAOPfIG7nkDRXqBwO5DvBOSuB645AtfWAjlrgNy1
wHVHIM8RuG4P/GQLXFgIZFgCqZ9DfOJjCGInojZ4GJ4cIDzwIBTuIVzdJolJIu0I
rvOV4O22vT05OVnWFxCLxX0AYNK/4uJi5OXl4dy5c/D19YX5e5OgaTQc2ibm0Blh
Ad2RYyXP3/w9SOwh0dBRE3pJz3x8u5qe4YYeB1hN5HiCQf29hVNpvndkhNWh2M7D
YZH3o6KicOLEiU4WK6nzWFxcW0zssfbQsPDW0LBwgV9AYOsh/wCBh5dPq9t+T8Gu
va5tzi5727/duqPDcdOWLk8vn1Ym+GPKokxD6PVuYM/Vf+nSJQQHHnp1yFoBEUsJ
KevUcHWnAX4/OAb8xDlovt9W/80AACAASURBVLYZndUxEAqzIRbnA7gINCVKje8K
lO4H+AlAHQuoiQeqooDHQcBdL+DmbuC6E3BlDXBhBZC5FMi0ATIXA1k2wIWlwJXl
QPZqCQz5G4G8tcAVGyDLCjg7Dzg1E+3xk1EXMgxsX8IjT0KRK+EnZ8L3joQjtoQ9
/1KG13d7WlNSUlBRUYHu7m60tbXJrQCWlZWhsLAQOTk5YLFY2LjJSaxtYg7dkWOh
P3oi9Mf8AwYWk2FgMRmGY99/qwwsJrWo6Ro4ENEUKQTMyzYYTzCk3zr/HGevGQu8
o7DKI+Dy8ePH5dbymUkcpvjR1NSE+vp62dHryspKFBcXy1Y2h8OR2xJmvEDPdmlc
XBx8108Thy0hJK9VxtUdBvjNezSqYueguXAfXrWdg1D4GCJRBYBCoPUUUBUoWfn1
iUBrGtCSBjSmAM/jgfIQoNgTyHMGLq0Bzi6GMOUrdJ74HB1Jn6IjaRa6T3wK0anP
gdQvgfSvgazFEhCuOQD564FCJyBvDXBhEfCjJZDyKdrj30ftkWGoOEB4sJ/wy27C
pS0Elr0kJthpqSPy9/N9lZ6ejqqqKlkD53UA2Gw2SkpKkJeXhwsXLiAkJAQfzf4c
eubjJUYf9wGMxn8IowlTYTTho35l+N6H/27vzKOqLrc+/lxTSXPoWjR4M/OaeU0t
M0uTNC0tzSFTMwecUyPNMXECmQRkOszzqICAIqKAzEooMnmYBAQccEwthzQ1SeHz
/nGe33l/IPXWbbj1Xn9r7eVxLT1wzv7u/ezhu/dz5eGOj02VTbruEgR/1xeHfsYu
3jYj1zpWj1yzucLR0bE+MDCQs2fP/tvNGGXcuikvoDkAZGVloXGwqrca+zf8p7ck
cUknCs27csrHiCsHVlNXl8G9e5dpaLgGVEBdDJzYBDU2cCMa6nZD3R64uRMuhkG1
K+Sth+SFsOMjboaN4IrPa1x068V5l26cdXiK806duaTpxjWvXtwM6M/dMCOIGgG7
xsHeKZA5C7IXQN5iOGQCSRMhdhQNW4244duXcw6GVFkIitYLslboqoshxoKN7wtW
TnnlW41GQ1paGufPn9cvsGjaAKqqqiInJ4eMjAzCw8NZvmJlvWH33jzRsx9P9XqV
p/u8ztN9B9K57yA6v9RU3rhPnurz+oWHO3T6QJbxe6hA0PbndPtaD1tmafPOF3YN
a61sizw8PFD46teuXdMze27fvq2fw/up55tvvmlEDW/qBRT3X1dXR3R0NA7Lx7F5
giBiXge+NP0HVU6v8E3KIr77LoG7d7+lvv4H4ATciYEaSzjpALd2QH0ykAZ1ifBN
JNR4QJ457F1I3bYJXAsYwgW3vpxy6MpxW0OqrTtSadmOKksDaqwEJ2wE5x0MueLR
g9uBr0LkcB0Ikj+G/XMgZxEUfA6FyyBpEsSO5m7YYK569eLkpnYcMRMcWi1IlfGA
84eCde8KzNcsuxgYGEhBQYE+C1Bbv9L8KSoqIisri6SkJNzd3Zk4bSb93hzBoJHj
eGXYaF4Z/j4vGo3kRaOR/PO1YfxzwDD+8bIRzzSVfm/yTL836dx30JnWbTtMkB3C
F2RM0PFnbeQeNHf5i8OWWTZMWGGeodFoiIyMJD8/n+rqaj1/TaljKyNeFy5c0Ne6
FYbw5cuX9ds2mpJDFQCogRIUFIT9zG64fvQwcZ8ZUmrdg7NbxnLrlB91dacldfsM
3IuDagv4ygdubgdSgH1QnwbfxkJtIBRaw96F3IkYyzfer3HWuTvHbQ2psmxH+UYD
ysx0kXzxekHROp0br7LUAeGSpgu3AvrpQBA/HtKmQfZ8nRcoWgFlppAwCaLf43bQ
QC5oulFpIdCuFexbrksP/aYJNo0XrP6wy3VXV9eGnTt3UlNTw8WLF+9r/x47dkwf
C2RkZBATE8O2bduIj48nNjaW6Ohotm3bRkREBFu2bCE0NJTg4GACAwMJDAzEy8v7
rpeX912Nq9ttjavbLQdHpyuOzi5fm5mbH23fvv0IGRN0E0I89nP6/i2EEA+9uWiN
dsina847Ojr+4O/vz759+zhy5Ai1tbWcPn2aM2fO6AFw/vx5/VYNNU28OYp4U3q4
+vz38vRg84cP4TujA8nLO3PU6VUuJptQV5fGvXsXaWg4ByRAjRWUrYVr4XA3Uad8
MuFWApwNgyJbSP6U21tHc9HjJWrtO1Nl1Y4j5jqla9fpArc8U0HeakGulMK1gnJz
wXFrwUWXznwf2B9iRuosfv9syDOB4hVwZA2Ur4P4idRHvM01734c39SJkg0GZK8U
JH6mK1E7fSgwHy2wNF97MSAggJycnEbWf/LkyUa9fyUWaI5V9FNklbt37+rjsevX
r3P16lV27dqFiYlJvuwUvimEeFEI8eTPJn8MnL109eD5q1i8xqzEzc2N3bt3o9Vq
9QBoCoKmXkANAoXF2xxFXM2Jd7HdgMtkA4Jnd2Kf6XOc9BnO1QIL6utzaGioBDKg
drNOEed94Faszu2TCXf2wsVtUOYEaYu5tWUU5zW9OLapE+XmOksvWKNL27JWCJIX
i++TPhO3k5eI+rSlusLO/uU6IJSZ6TzBFbeu1IcNhF1jIGM65CyE4uW6bOPoel2W
EDuOm0FGnHXuzhHzdhxabUDKEl1jynOKzgusmTfyjKenJwkJCRw7dqyR+1e4f1VV
VVRWVlJSUtLIWBRDUafNStm8uefSpUsEBQVhaWnJkCFDXIUQE4UQb8mewdM//z6A
D2c++/qsJffenrskX6PREB4eTm5uLpWVlZw6darRUXDu3Dk9CC5evNjoKGg6K6AG
gRoANTU1uNt+gcfHbYn45AlyNrzA6cB3uVZgTkPdLhoa9sIFLyhYDMfs4etg+H4X
1KfAnST4Jhoq3SBzObfDx3Je04tq646UmeksPu1zcc3uA5E+urdwa2cgVgkhTIQQ
C1q1EJ8MeV6Ym44U24KMxemkxTqQlJsLTtkKbvr0hOjhkPIRHJgHxcug3BSqNkDN
RtgzhbsR73HRox8VVobkrelI2lIDouYJfD4W2E8QmE96+raHhwfbtm2jrKysWes/
evQoFRUVaLVaCgsLKSgoIC8vj0OHDpGTk8OBAwfIzs7myy+/JCsrSy/79+9n//79
+r9v374dR0dHTE1Nr8m28VRJFHn5FwFACNGy/5RPsvp/vOCGnb39HT8/PzIyMigp
KdGzW3/sKFBA0NxR0JQqrj4C3Dctx3dGR3aYPE3+xl6cDR7F9by1NFwMoOGMK5Ss
huxZcMIZLofBrTi4FQ9XtsMxP/jSlLqoiZx37UuVVUeOmAkK1oi7FmNEUuuHxDoh
xHIhxGdCiPmypfqxtJDJQoiPhBDTZw8S7lHzxLf5prqj4GundhAxCBLHQ/ZsKPoc
KkyhegMct4AvF0HMeK76G1G9qQsF6w1JW9qO6HkC/2kChw8FVmNb4OrqWh8WFkZh
YeF9zF/F+svLyzly5AilpaUUFxej1Wo5fPgwBQUF5Ofnk5eXR05ODjk5OY3AsG/f
PjIzM0lLSyMoKAgrKysmTZq0XwixWn7OETIjeOoXsYBf+sD4036T5jD781Wlbm5u
xMXF6T9A06NA8QLNgUDxAs2BQO26PO3X4Gf8KDsXP0O+xYucC36P66mf0FC2gYbS
NdIC18JJDVwKgavb4FI4nPSHfGvqY4256DWQahtDjugKNHUTXhbeQoglUulT5Zn4
rnSLRrKf/oYQYrAQYqgQ4p1Xu4hZOxeKr8rNBRc2CxpC+urKwl/OhKIlULkajpnD
SSs4aQ1xH3MjZATHHXpx2Kwz6cs7sX2BAQHTBI4fCmzGCpydHL4PCwsjLy9Pv5ru
x5RfUlKiB0BhYaFe+U29gWL1mZmZ7N+/n927d+Pm5oa5uXlD586dHYQQi4UQH0r2
dnchRKdfAoAWzw99z7DP2Km3X59ofMTFxYWwsDAOHDhAeXk5J0+ebASCpkdB03ig
6VGggEA9Q+Drthl/404SAH047/8WN5Jm0pC9gIbseZA5DYrX6Uq7Z33hXCAc94Yi
O0hYyJXAtzlm15UycwOK1wu+GCG2CyGWCSFmSwKFQpt6UZInu8odxc9K+adMmfrN
GiiMi9eLexcdBHcDukH8CMg2huLFOgCcMIdaazi1CfYYc3PrGGpd+qPd2I2MlU8R
Pb8dATMEzhMFtuMELk6bv4+KiuLw4cN6+ria8l1eXk5ZWVkj5SvWn5eXR25uLjk5
ORw8eLCR9WdmZpKZmUlGRgYRERHY2tpiYmJyQghhKoRYKBlDvWQa2P4XX9L0rxEf
2PR6b+JdK5tNt7y9vUlNTUWr1eq9wE/FA01Tw+biAfUTEOCPt/ETxJg8S97GFznv
Y8T1mDE0pEyhIf1jSJ8C2jVQaQvHNboqX5ENZK7g9raPqHXuS5l5R7TrBOlLxbW/
CbFKCLFIuvkh0g2q9xE/KnvoHeXrxySx4lkhRM+DX4h9V10EDf6GED8csqfrAFBt
Cict4IytThLncDtiArWug9Ba9iR9ZRei5nck0Li1DgDjBW6umnvx8fGUlZVRVVXV
rPWXlZVRXFxMUVFRI+Urrv/gwYMcOHDgPtefmZlJUlKSbkLJwoKhQ4dGSeufJr1c
F/l5H/7FNPBOz73waI/hY09/MHN+mUajITY2lry8PGpqau4DgRIPKCBQp4Y/BgL1
s3v3brw+fYWoRV04ZN6Lc15vcD1yBA2JE2hInqhrzhR+AWUWcGQTaDdC1gruxc3k
vJcRlTZdKFhrQO5qQcAMUSopVLMlqbW37Jl3kIzmptezKJT31pJZY5i1Qth/7yEg
qBMkDIeD06F0MRxbC6et4bw9nN8Me+dzO3Iite5GHLbqTdrKLkQt6ETADB0A7Cd3
wMfHh6ysLL3Sq6urqayspKKi4j7l/5TrV5S/f/9+veVnZmayY8cOHB0dWbdu3c2H
HnporTzyJkiP97hkCbf8d2YBWj03aPi0XsNHn3R2dtYzZUtLS/XBjBoESoFIDYIf
ywyuXbvWKBOoqKjAa81kwub/g6x1PTnt9hrXtgyjPu59GhI/gJSJkLsMijZA4TrI
Xq6zvvCx1Dr1ptiskz7N8/xYlMhIf6q0gq7Swh/Wd8buF4X+3kYI0bHMTFjhJ2Dr
U5AyAvJmQvlSqDWDC5vhaw1cdIGkBdyM/IgTbkMpsHyJ5JXdiVpgSMCM1jhOFDjM
70NoaCjl5eUcO3aMysrKn3T96ixAcf3qc1+t/PT0dFJTUwkJCcHa2prp06dnyUB3
itxs2kt6OB3o/42BkBZCiJZdXxt60HT9hu+8vb1JSkqisLBQv4xZiQd+CgQ/5QnU
DSZfJ3P8Zj5N+uoXOOHcn6tBQ6iPfY+GPWN1XblsE8hZBgeWQuo86rd/yLXAIZx0
6IF2fTu+XCFIXiKImCuuSALlh9IKlP74z1nz3koI0eZbNxFPiIDt3WHfaDg8B6pX
wnlbuOYJ133gGzdIXMj18I+odjEi17I/Ccu6E7nAEL9prXGYINCYTiYhIYFz587p
AaBWfnNRv1r5agA0Df4yMzOJj4/Hw8MDCwuLhh49ethKxvBYGeB2U2hiv2Y8vIVh
j96D35kwuUKj0RAdHU1OTo5+cqWpF1ArXh0EXrt2rVkQqJ+IiHDcZvdgz7JuVG5+
ma/9BnM3ZiT1u8ZA4gTIMIasRZC5APZM5Yetb3PFuz8nbJ+i1MyAnC90zN7o+YKZ
r4tgmeK9piJN/uRdPAoAyq1Fv/oA8QNbBCT0h4MfQtlCOGUG3/lAXSTUbYErXhA/
n29CJ1LuNIRs8/7EL+1O+LxOeE9tzeYPBO5O1pSUlOgXYamVX1FRweXLl7lx4wbf
fvvtfSRSdQu56RDpsWPHKCoqIiIiAjs7O5YsWVIrY56PZMDbR8Y7BgpL+NfsB+jw
ytB3Ip2dnQkKCqKgoEC/3Elx5+pG0Z07d5qtWCmjU+qewffff9+oIOSxdhoxJs9S
bN2HC54DqYt8m3s7RtGwZ5zOC6TPgeSZEPchd0KN+MajJ6fsDKncqKvHK+XYkJni
+/d6iXXSEp6WrlB/DcuPSfFG8Y97fqKKLQKiDSF9GBRMg6plcN1LV44mDepj4eBq
7sTO4YzfWIrsjEhb8xKxi7sSMqsDHh8JnOb1JCIigu+++46rV69SVlZGeXm5HgCK
Um/dusWNGzf021EU5Z87d06vdCVzUABUWlpKUVER8fHxWFpa8u6778ZI6x8tQd9N
er5W+q3mv2IusF3HJ5/uuXK16bWgoCBKS0upqam57xhQB4NNy8RarZaSkhJOnjx5
X7FI/XhoNhM6vwvZ61/guHN/vgsZwp1tI6mPG0NDwgRIMYakqRA7jrqwwVx268ZZ
u3Ycs9JV8LTrdHQtSdK4YzlGuBm0FL1ldN9JBoJtVbd0Kbebtj1nL8bf8xHnCBMQ
LiCxPxwYB2UL4IKtLD1XASVAPCSacC1iGlWuIzhkPZi9q3oTvagzAcaP4DJZ4GWz
hJKSEj0v4siRI3rlK9NAWVlZhIeHk5CQQHx8PDt37mTHjh0/2QTy8/PDx8cHb29v
xf1/36ZNm2XS4w2RQe/T8rPqL5/6tQsiOtnYbIry8vLC398fPz8/vfj6+uLj46MX
b29vvXh5eeHp6YmHhwcpKSkcPXqU2traRkeE+tFqtQSum0Dyim6U2PTla+9B3Ax9
i3sxo2jYNRb2ToI9kyB2LPVbhnDduwcXHNpx2lZXvavcKCjdoKv9H1ilY/HGLRRn
IuYIje14MeqJ9uIZaRmPCiE6xC0S/U7aiGW33EUefgJCBGwRENcTMkfAYWM4ba5T
OJeAG0Al5JlxO3YuZwMmUOwwjMz1rxK/tAfh8wzxmtoazZyuhIeHNwpyFeXX1NRw
5swZ8vPzCQ4OxsLC4ua8efMOzp07N9vY2Dhl5syZe2fOnJk0derUuClTpuyYMmXK
jkmTJsWMHz9+i5SwkSNH+o0YMcJ3xIgRvgMGDLCVGc8oSQZRj4j9OCn0F4DAQAjR
/v333x9kYmKyburUqRvHjRu3efTo0a4jR470GTp0qOvgwYNdjIyMXIyMjFxeeeWV
Tf369bNWZMCAAfY2NjZ1oaGh5OTkUFNTo18Zqxwl6sfbzZFIk+fIWvM8VQ6v8I3P
G/wQ8Q73tr8PeyZA4kc69k7EMG4HvMQV186ctxecsRXUbhIcsxJUWgiOmOkaQdp1
OindICgzE/eObhTfHLUQF7+yF3XfagR1ngL8BAQJCBMQ2xPShkHuFDi+GoiVygeo
Aw5zN34hl8I+pkIzgoNWg0n+oi/Ri54haGYHNJMEfk5rOHPmjH7fUHFxsf4IOHPm
DKWlpURHR2NjY9NgZGQULKd/TGQKZyxL1R9Jq1ZkkqxrKPKhlHHS9b8uq35PSC/X
aGHErwGAMhb+mHSl/WVJdYIQYrqUGarX02QKpsgMY2PjKCcnJ2JjYykuLqampkZ/
PDQdrKiuribIeh5xS54l17wXtZoB3Aoewt3Id2jY8T7sngA7x0HUCO6GDeSWby+u
unXmwmbBeXvBWVvBaQmGEzY6z3DcWvf3s3a6Eu9FB8FNN8EPXgJ8BQQKCOsIsb0h
ZRjkTNJF/Q2RgOr3u15G/e5FXImYTrX7e+RtMiJtbT92fd6drXMfx2tqa9yXDiE1
NVX/XyorK/XpnsIFTEhIwNHRkWnTpmXLyp2JEGKWVPIYmcYNk2XroVKGyPbumzK9
HSzldUn+eF7OB7Rr7q6hX7shpJV848dlgPGy/MFDpAxVvVb/km8KIYY+9NBD72zY
sOG4l5cXqamplJeXc+LEiUZxgvrZHhND0OcDSFjWFa3li1z0ep2bQUOojxwhQfAh
bH8PIoZyN+Q1bvv35rpnV65oDLnkoFPwhc0qcRBcchB84yS46iL4ViOo8xLgIyCw
I0R0h7hXdTn/gY+gcjncCQNUy7BunKN+9yKuRkznmOdoCmyHkLm+P7uX9WDbwqfw
N34Et1lPEOTvrf8vly9fpri4mJKSEn3WlJmZibu7OytWrDjVokULC1m5+1hasZEM
4vrKs/xFmc/3kpNA/xJC9JTygpTnpU6elNmOwc8eD/8lpWEZRbeVHLOnZXXtOSnd
VK+7qqSbdEs93582z9zWzq4hLCyMnJwcKisrG9UMmg5Lhvm5EvbJs6R/0Y0ah5e4
6Pkat0OGUh8xAraPgV0TdNStiKHUhw3kh6B+fO/fi5ve3bjh0ZnrboZc07TjmsaA
axrBdY3ghqvglrsBtz0MIKgLbO0JMf0hfgikjYaD06ByFdwKAsoAmclcLKMubj6X
t07lmMcoCmyNyFzfn4QVPYn+tDMhszviPrU1Xg4bGn0OpchTXV1NbW0tubm5BAYG
Yr5x4y1DQ0M3IYSZdPujhRADJY9PGfd6Ulr0403ksSby9yY08N9lRYz6Bs82Emkd
5Q9Xy6Mq+bsQolOn5/71zLvr/DxHmQXe+9TcERcXF3bu3IlWq+Xo0aONikdNFysF
O68heuGT5GzoTqV9by54DuDbACN+2Dqchqj3IHa8jtod/TZEGMGWgdSHvcrd4Je4
G9SXu4G9uBvYk/rAnjQE9YTQXhDWG7b0he2DYNdQSHoPMj6EQ7N1zZ5r3jqiCWeB
76DYm5vRs7gQMomjmhHk2Qwic10/Epb3IObTzoTM7oDHlL8R7LxKf+6rlz8qbKqi
oiIiIyOx2bSJoeOnnpD7FlbLY1MhbnRWXVHXTiq17f8hbX7OnYa/1533LX6qtPrB
5pihk90Sqye7JzLBYQfjrEIxs7ZDaS4pKaWSPjZdAZufn0/IpvnEL36SA2ufo8q+
N2ddX+Fb/ze4FfIW9yJGQvQYiJ0AseN0BI5tQyFyCEQaQeRgnWwbDNFGsH0I7BgK
scMgcTSkTYCsqZA3HypWwwUN1EcDWVAbwZ0ds7myZQqnfMZQstmIgxv7k2bam4Rl
3YlZ9BRhczriNUUQvHlJo7HxS5cuodVqKSoq4sSJE5SXlxMfH687901W0m/iogbD
Hi8FS+LGJFmveEHF5W/1f9Usmsrvdn38zwDBfcp/x9Sj/RSfdPep/vvuTfXL5GO/
DCZ7JDHBaSfTLX2ws7Nn69atHDhwgLKyskZNpaYVwszMTIIsprFj0WNkm3ah1PoF
ap37cMFjAN8GDOa74Leo2zqS+qgxsGMC7PxQlyXEjvxfiXtP19dPGANJ43SSMQWy
Z0L+IihbBbW2cFZDfe5qbkcbc2XLR5z1G0OlyzDyrfqzf11fklf1IH5JF6IWPE7I
rEfwnvoQoU4rGnH5bt++zeHDh9FqtVRVVXH8+HG0Wi07d+7E1dWViYtWMWDaMl6f
tfpyy4fbLpbt6oESAIaqOf8/9u7g3woYU7xSuxuH5JwwDsnBOCSHGcEHmRF8kGn+
+5jilcoEx50st9Hoj4KCggLKy8v1xZFTp07dt/o9IyODIOuZxCxsR8bKJ9Fu7EqV
XU9Ou/TlK/f+XPZ5g28Dh3IzbAR3to7ih8ix1EdPgB0TYddE2DNRR/BMngRpH0Pm
dN3AR9Z86tPm8kPCbG5HTeXa1klcChrPKe/3qHQeQoFVP75c35u0L3qQsKwrsSZP
ETGvA8EzW+Nl3I5wb6tGa2QaGhrQarWNGjvFxcUcP36c48ePk5WVha+vLwvWbWLY
MicGzV2XqErhesqz/1FV46rFH3J38G/pFcZab+04O7zw1uzwQhSZtbWAmaG5zAg+
wMfeaUxx3oHlJjt8fX31PIOqqip9VbG2tva+DVnZ2dmEOK0gdK4B8Sbt2b/qCbTm
XSi3fp5jDi9y2uVlznu8xiXvwVz2H8rVwOFcDx7JjbBRfLdlDDe3jOXm1nHcDB/P
ja3juR42nquh4/g6aAzn/d7jlOfbVGuGUGr3Grnmvcha04PUld1IXNqFuM8Mifqk
A1vnPILfdIGvSU8CvZ3vY+kqyi8oKGjU2CksLOTo0aPU1NTob0hZaePCe+t86rsN
HrVGpn39ZABoqA7o/nIAEEK0nB2pjZobXYpa5mwrZnakFuOwXKYF7GeNo/eZLVu2
kJeXR1VVFVVVVfqbPJUS83fffXff0ghfVxv8Fz1H9DxByuet+XLV38lf/yTFFs9S
bvNPqu16csyhNyec+1Hr0p9Tmtc47TqQ026DOO0+mFNugznpOphjmkFUOb5GuV1/
imz6kmfWgy/XdCV9ZRf2LutMwudPEWfSie0LOxI+pzXBxgK/6S0JtZlBUmLCfUsh
Dh8+3IjHl5ub26iff+jQIY4cOaKfAwgLC8Nss2v9+xt8z7U0aDNWHgPKXJ+y8eP3
vTv4dwBACyFEK+OQnHGfxFailvk7Kpi/vZw5kUXM8Eg4ExQU9J3aesrLy6mpqbnv
Wld121hZG7MtMhx/s8mEzG5F9HzdIqjkxYLMZa3J/qIDh9b8nfx1T1Jo1pnD5l3Q
buyKdmM3Dm/sRqF5N3LXd+Hgms5kfWFI5kpDUpcbkrikE3sWd2KXSUdiF7Uj6pNH
2CoV7zNN4LfsNbZv9b0vRvn6668pKChoRORQt3PVrdzs7Gy0Wi3l5eXk5OQQERHB
JifXulGLrRJlcU0p6ChEjla/lRf4IwHQ+tEuz7dbEFd9cdHu46hlYfwx5mwr/s7Z
1a1avRZNIUpUVVXpt2SqwdA0O1DmCQM8HfBd8SZBxn8jfI4gdoFuRm/vYt3oduoS
QdrnUpYakPK5ThIXG7DHxIDdJu3Y9akBOxcZELvQgJj5Bmybq1sSFTJT4D9dELC0
H1EB9mi12mb3/KvdvZrF05TDp9C49u3bR15eHqWlpRw6dIjo6GjsHJy+Hzlphp1q
kEOJBZQZ/78WAIQQj8yNKfM22XsGRT5NOs2iPScbVto471e2hyhrVSsqKvT9cgUM
TQFx4sSJ+7aJXLp0icTERPw97PH6YiSe09sQMF2wZZZuecO2eTp+QEwTiZ4viJ6r
G+uOnKNTeNgsQbCxbg+R38x2hKwfTUyoe7OKv337tv6sb2r1iuKbsngyMzNJT08n
LS2NtLQ0Dh48iFarQ2CPuwAADYNJREFU5dChQwqt68748eMtZED4XJNYoMXvdnfw
7wSAtuPtoocuSbuIIotTvmKea3R6WFjYD+qtWkqxRGmXlpeX/yggjh492uzyxq++
+oq0tDRCgwPw3WSC/6o3CZjzKEEzdEoNmamTUClhM3WTvMEzdIuf/KYJ/Bd0IWTD
GLZ5b2TnjphmFzcCVFVVkZ+fT35+PoWFhc2yd5pafUZGhl7xKSkppKamkpWVRUpK
CtHR0Wg0GjZs2HBr5MiRNrIH8IIqFjD4SwJACPH44tSvKpbtv8rSfVeYH1Vc4uvr
e0ZNFCkuLqa0tJSysrJGogaDWioqKqioqKCqqqrZS6Lq6uqorKwkOTmZiIgIgnxc
8LFbiq/FTHzWjsPHdBS+a0bhu2Y0ARs/JnjzZ4T7bCI8LIjMzMwfVbqy618568vL
y6mqquLw4cMcOHDgPsWrrV5RfmpqKsnJyaSlpbF//36SkpIIDw/HyckJU1PTqz17
9rSUjbS3VKPd7WVK+NCvBcEfmQUo5eJOn8RWWq04cIPPM7+5ZO/onFReXq7/Qo8e
PUpRURHFxcWNpDlAKKBQXiuAqKqquq+d3HSL54ULF6iurqa0tFRPTKmpqflJZasB
pVi8VquloqKCo0ePUl5ezuHDh0lNTSU7O7vRiFZzik9JSSE5OZn09HQyMzPZs2cP
ISEh2Nvbs3z58rOPP/74JiHEp7J7+pbsnyh7f/9SHuBvMmgxEEJ0HLxgY98VB25+
v8opwCU+Pr5B7bILCgr0ebNSNm0OECUlJXpRrlpRiJQlJSV6UNTW1t43b/DvPHV1
dfrtHfn5+ZSUlOgBV1JSQm5uLsnJyQQFBREcHExSUpL+fFczdtVWv3fvXtLT00lP
T2fXrl0EBARga2vLokWLKtq0aaO0g6cJId4XQgyQfP7HVLv//vwAaKZz2F4I8dhc
1+1zfH199WZ69+5d8vLy9NGz4lYLCwsbAUINiqKiIkpKSjh//ry+w6awahVGrVar
1YOmurpaX1ZW8w6bU7ZyG4hi1fn5+RQUFFBaWqpn8RQWFpKVlaVXnp2dXcOqVasu
2NjYEBgYyJ49e/Tne1OrT0pK0lO4d+zYgbe3N9bW1hgbGx+QzaBPJQlkrGyn95LW
3/EvlQU0c7dAWyHEo+vWrcusqqri9OnTVFdXk5mZSVZWFnl5efpgSg0GNSAKCwv1
BRalOJScnExkZCTJycnk5OToFV9UVKSPypsDk1qUgo06is/Ly+Pw4cOUlJTogZWT
k0NKSgqRkZG4u7uzcePGO3PmzMl5/vnnnYQQy2bMmJFuY2NDQEAAu3btYu/evSQl
JemtPikpibS0NPbu3UtUVBTu7u5YWFjUjxs3Ll42ghZKts870vJf0I9y/cbl4D8E
AE28wMNCiA5WVlYWGzZsqHNyciIsLIxdu3aRmJhISkoKubm55Obm6hWgAKIpKEpL
S6mtrSUvL4/AwECsrKwa7O3t8fX1JTo6mr1795Kdna0/VgoLC/VjVWpvo7y38vOU
n3/o0CHy8/MbLW6Kj48nODhYdzXLmjVff/DBB7vbtWu3QU4aLxFCLBBCzJ43b166
tbU1/v7+xMbGsmfPHnbv3k1iYiKpqans2bOHrVu3otFoMDMzq3vzzTdDJQXsE3nm
vy1p3M82Wur0GwR+/0kAKPsH2wohnhg3btwHpqamZ21sbPRKU76k7OxsDh06pBdF
KWpgHDt2jPLycmJjY3FwcGgYMGBAwOuvv+49d+7c7HXr1t2wt7fH29ubyMhIEhIS
yMrKIjc3V6/s/fv3N1K2UqxR8vaDBw+Sl5fHxYsXOXr0KH5+flhbW9d/9tlnlYMH
D/aTCv9EUt8mSx7ee0KI4UKIkZ9++mmytbW1/rPt2rWL5ORkdu3aRUhICA4ODqxd
u/ZGnz59NPK8V4ZW35Jzi8/IVnDb36MT+IcCQAUCJRjsJIR45qmnnjJavHjxvo0b
N+Lq6sqWLVuIi4tj9+7dpKam6hWilkOHDlFaWkp1dTXp6em63bomJoeFECvl2TlL
CDH7zTff3Dx//vwsNRgiIiKIiYnRu2G1wtWpmyKHDh3iwoULnDhxgsDAQEaOHBmj
OqNnSIW9I0fKX5Zn9fNCiBdbtGjRf8mSJWnW1tb4+Piwbds2duzYocQLrFq16uIz
zzxjI0e3jCWABssOYGfV3OJvrvj/JACUWKCdrGp1F0IMmDx5stvatWvr7O3tCQgI
0FtMQkIC2dnZeuUcOHCA3NxcqqqqyMvLIzQ0FGtr69uGhobm0oqmSwLl+/LPCS1a
tPh43Gfr8xaZb8bC0uoHT09P4uPjSU5ObqTs5jZu5OTkcP78eY4dO4a/vz+SrbtM
LlpQArSXZY7+jCzXPi4V2K1ly5YDlixZkmVtba2nxW/atIklS5bUdOjQYZ08MqbL
39dIAui+ku//CwCoZgtbKLGAvIampxDijVdeecVk5cqVZywtLfHw8CA8PJzY2Fji
4uLIyMjQK0mZnYuLi8PR0ZHx48fvlO5YmYF7Q3bRBkoFvf2v8XPMR9puY7XFpvOe
np7ExsaSlJTU7HqVffv26at1Bw8e5Ny5c1RVVeHj44ORkZGPBNok+d59VK66jWoN
a1upxOfatGnz6tKlS3M2bdqElZUV8+fPz23ZsuViObY1Vfb+35DKf/rn3Pf3lwVA
k4DQQILgSekJ+rVv3/7dBQsWpJqZmeHs7ExgYCDR0dHExsaSkJBAbm4uZWVlZGRk
4Onpiamp6WkZgM2VfHgjaY3/lLXz54UQ/3rkyS4Dx/hl1i3f5FLr7u5OdHQ0CQkJ
jZStLtYo+Xl2djZnz56loqICb29vBg4cqBFCzJNK66cauGgapCmFr8eFEM+2b9/+
9ZUrVxbMmjUrQir9I8njf1t2+3pIy+/wW3b7/pQAaG4ptfzghtIbDB43bpzdmjVr
btna2uLt7U14eDgxMTH6M3vLli3Y2trW9+nTx1la5BR5Fr8oo2YlZWqrzPe/v02b
Y+ISdMLV1ZXIyEj27NlDenp6I4UrtXlFsrOzOX36NGVlZbi7u9O/f387efYPU3Hu
G3H1mrlXsb0kdbwiATpCBopDJelT8SC/u8v/0wDgR+4ebCdd4AtCiFf79Okzffny
5TUWFhZoNBqCgoJIS0sjPj4eZ2dn5syZc1BVLVP65l2lNT6sWvBgIIToODw42362
Z9RZZcvZ7t272bt3r17Zqamp+iqdIllZWZw+fZri4mJcXV3p3bu3UpsfIuntnZpL
zZpUQB9WzU70lBF+b+nyu6hIn78p3etPD4AfAcIjqmmjXm3atBkyb968nRs2bGiw
t9eRRn18fDA3N78u8+85MoBSRqAebzT9+r/v3eZ1191vTwpIvOri4kJoaKg+yFSq
c4rs3btXX7DJysrS1wE0Gg0vvPDCBjmwoSyZePQn7+ZV7VyW//ZxeeQ9Ib2HEum3
/I98938GAPxI17CTjKT/JYR4bdSoUWampqY3bG1tsbe3Z9SoUQEyFZvYhDDRXk2Z
Ur3vwwaGnR99NyDlhouLC4GBgezcuVNfqVMUnpSURGJiIgkJCSQkJLB//359x8/Z
2Zlnn312tTxuBkuQ/hwA/E111LVVcfsbXeDwXw2AZr6w1qo7if8phHi1e/fuUy0t
LctXrlxZKs9hY7nv5yXpSu/rkze5+LLda96Jmc7OzvoKXWxsLImJiY2UnpCQwJ49
e/QxwokTJ8jLy8PR0ZEnnnhiuQzgfhYAfg5t/j/6ff/ZAPAjzaPHZbTdp1WrVoOe
e+658TLgU879bvLfPNy0SdIUUM/bR5o7OjnV+fr6sn37drZv365XdlxcnH4OX5nF
j4qKoqCggJycHBwcHGjfvr2Jamiji2zO/CJF/lmU/6cFQDNxgYEKCM/IlOlFmYb9
U0WTav5uvP91wW0N5699y2az4zfe3t5ER0cTFRVFREQE4eHhbNmyhbCwMEJDQwkK
CiIwMFC/92D37t3Y29vTqlWreTLdHPjvAuBP9T3/qX+55rOETvJY+IcMwp5Quf6/
/R8AaCOEeGqDncNxT09PwsPDCQgIaLRdw9PTE1dXV5ycnNi8eTNK8cbc3JyNGzfe
lRnAaJnSKeycBwD4g71BW9Ugatufmn5t0oN4WAhhuM7GLsvNzQ2NRoOjoyN2dnbY
2NhgaWmJmZkZa9eurV+2bNnX8+bNq5g0aVLG8OHDw3v16mVrYGCwQFr/cFkBfEKC
8gEA/mAQqK+sb/UzV70pMUWn5au+CLK0tGTt2rV3V6xYcfaTTz4pnjx5cvLw4cPD
evbsadeqVatlsr6wSI5pz5ap3wdS+QP0u3Z/5FbuBwD4g0DxS/cbCiE6vP/++2+8
++67Yx9++GEj2TuYI5U8WzZ5pkuFT5ZKHyOrd0PkJpSeKoKGwQMA/DXAomYkdZIB
3Isymn9XZhVvy/LsG7Kw1F92+vpIpXeXQegTqm2bLf/S38t/EQAaDajIauMzUql9
ZMHpeZnbP626d1e9lKGNtPjW/4my7QMA/HZewECVUTwhvcHTMrt4TFp3uyYKbyWl
pbr2/wAAf00QqNfaKBmFWuH3dff+334f/4UAUG8BV3cLm7Xw//ffx38bAH5tNvEA
AA/kAQAeyAMAPJAHAHggDwDwQP7y8j9erNmcYzVpYgAAAABJRU5ErkJggg==
}

;terminal.png

img3: load 64#{
iVBORw0KGgoAAAANSUhEUgAAAIAAAACACAYAAADDPmHLAAAABmJLR0QA/wD/AP+g
vaeTAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgAElEQVR42uzYeVCb550H8McBO4nT
uGm822YzbTc723a3yaQ7k2A7cZIm3jTx7cT4rDdOc07sGNtIQheXEfchDguELkDi
vmQjEKdAXJYRAsQhxCljELKwsYIxMYsN1uvv/oFQ8CZxc+5kZv3OfEaM5tX7iOf3
1fN73pcAIPf9/3V/Eu4H4P4k3A/AfUtWAHgAgAcAT5eVX8HTdc4Drs/cDwAAQghZ
4fKAi8cSi8Xym+vXr6+fnZ19c3p62ntiYuLwyMjIJ319fb4dHR2cpqamEIPBEGky
meKHhoZSxsbGpBMTEwqHw5H3+eefK2/dulXqdDornU5nrdPpbKQoSkdRVCtFUR0U
RXVTFGWmKGqQoqgLFEWNUhRloyhqgqKoSQAOAFMArgO4AeC/AdwEMA/gNgAKwB18
9+MOACeABdd1Z11jfUZR1BXXdxmhKKqfoqhOiqJ0TqdTMzs7e8Zut6fr9fpovV4f
ODIycnRmZmaH3W7/d0LIShfPZTyWze0KQsiKn0wACCErpqenn5qZmdltMBj8x8bG
MpxOZx1FUYOuSb9/fIuDoqgbCwsL9RqNhme3218ihDxICFm1LBQ/SAi+d+Fv3Lix
02KxSCmKuni/bD/eMT8/b1Gr1ZF8Pv8PhJA1hJDVrkB4fp8gfNfCP6LX6wMAWO+X
5v9+cdDpdOKkpKTfE0Ieca0MS61hxY8aAELICoPBcBzAZz/Fmblz5w4oinJzOp24
ffs2bt++jYWFBSwsLGB+ft7t1q1bd7l586bb3NzcPS0/d/k1lq69sLDgHnvp+/wA
bQHz8/MAAKfTOVdVVRVCCPklIeQxVxi+9YrwjYs/Ozv7xOTkZNl3Kcr8/DxmZ2cx
NTUFh8OByclJXL58GXa7HTabDVarFWNjYxgdHcXIyAguXLgAi8WCoaEhDA4OYmBg
AP39/ejr64PZbEZvby9MJhN6enrQ3d2Nrq4udHZ2wmg0wmg0oqOjA+3t7Whra3Mz
GAxobW110+v10Ov1aGlpwfnz57+WTqf7kq86r6WlBS0tLdDr9e4xDAYD2tra0N7e
DqPRiM7OTnR3d8NkMsFsNmNgYADDw8MYHR2F1WqF3W7H1atXMTMzg5s3b35dK8C1
a9cwPT0NALh+/XpTYmLii4SQfyCE/GzZivDDBWB+fv45AJZ7Ffr27du4ceMGHA4H
xsfHYbFYYDab0dXVBYPBgObmZmg0GlRVVaG8vBxlZWVQqVQ4e/YslEoliouLUVhY
iIKCAuTl5SE3Nxc5OTnIzs5GVlYWFAoFFAoF5HI5MjIykJ6ejrS0NMhkMshkMkil
UkgkEojFYohEIohEIqSmpkIoFN4lJSUFKSkpSE5ORnJyMgQCAQQCAfz8/L4zBoMB
gUDgvmZKSop7vNTUVIhEIojFYkilUshkMqSnp0MulyMrKwu5ubkoLCyEUqmESqVC
VVUVGhsb0dbWhv7+flitVkxNTWFubs69mszNzWFychKjo6OYm5vD/Pz8NbVa/QEh
5ElCyOOEkIddm8W/2xa+SfH/BODKVxX95s2bcDgcGB0dhclkgk6nQ01NDUpKSpCf
nw+FQgGZTAahUAgGg/G9JvmnhsFg/GjodDqkUiny8vKgVqtx7tw5mEwmWK1WOBwO
XL9+HVNTU7BarTCbzbDZbACAyspKBiHk166WsHr53cJ3DcCjAPr+d+GvXbvmHry5
uRmlpaXIysr6xv+gn58fmEwmmEwmWCwW2Gw2OBwOuFwuuFwu/P39ERAQgMDAQAQF
BSE4OBjBwcE4deoUQkJCwOPxEBoaitDQUISFhSE8PBzh4eGIiIi4S2RkJCIjIxEV
FYWoqChER0cjOjoaMTExbrGxsW5xcXFfK3aZ6NhYRMXEIsIlLDoGodGx4EXGICQy
BqciohEUHoXAsCgEhEUhIDQSXF4EOCHhYAWHghl4Cn4BwWBwA+HL4sCXyQLdj4mT
dDpO0mjwpdFAo9FAp9NBp9MhFotRWFiI2tpaGI1GWCwW2Gw22O12DA8Pu1cLACgo
KGATQv5ACPknQsijhJCH7tUS7hmAhoaGnOWFdzgcGBkZQU9PD5qamnDmzBlIpdIv
FZjJZILD4SAoKAg8Hg8RERGIjY1FUlISJBIJJBIJZDIZMjIyoFAokJmZiezsbOTk
5CA/Px8FBQUoKiqCUqmEUqnE2bNnoVKpUFpairKyMqjVapSXl6OyshJVVVWorq5G
TU0NNBoNNBoNamtrUVdXB61W61IPbX0D6uoboKlvQLW2HjXaBlTUNaCirhHldQ0o
q21AaW0DSmrqcaamHsqaehRVa1FQVY+CSi3yK7TIq9Qit7IOuZVa5FTUudS61CFL
XYusMg2yyjTILK2BvKQKGSWVSDtbAalSDXFRGcQFJUjNPQNBdhES5HmIlWYiWpyB
8GQJQuKTERARA1YwDydZHHzqS0dgSChO0BaDIBQKUVhYCK1WC6PRiIGBAQwNDaG7
uxsNDQ3o6uoCAPD5/COEkD+6NohrXJtDj28VgKqqqkPLi2+xWNDV1YVz585BrVZD
oVC4l8OwsDCwWCzweDwkJCRAIpEgOzsbSqUS5eXlqK2tRVNTE1pbW2EymdDb24v+
/n4MDg5ieHgYFosFIyMjGB0ddW+IxsfHYbPZcOnSJdjtdtjtdlyamIDVdglj9glc
HLfDMn4JQ2OXMGi1o2/UBvPoJZgu2tA9YkPnBRvahsdhGLaidciK1qEx16sVrcOL
DBbb3S7Y0GoZR6vFdhf98PiXtAxb0TJsxfmhsS8MjkI3eBG6wYs4N3ARzf2LGs0X
0NBrQb1pGNqeQdR29kNj7ENVmwll540o03WgWKtDbqUWsuIynJbnIkogQlBkDBj+
gTjqSwfnFA8+NDpodAbS09OhUqnQ3Nzs3lzqdDqUl5fDaDRiZmbm0rPPPvv6spVg
aXP4pbuDr73dGxoa6l8q/tIvXqPRQKlUQiKR3NUPw8LCkJqaCqVSicbGRnR1dcFi
sWB8fByXL1/G1atXMTU15d69zszMYGp6GhOOzzB+5Sou2idhuXQFg9YJmMfs6B6x
oWPYCsPQGM73X0Sz+QIaey1oMF2AtmcY2h4L6rqHUes2BE33oMsQaroGUd01sKiz
H1XGRZUdfajoMLv0oqLDjPL2Xjd1mwllhp67lLZ2u6n03VC1fr3S1h6UtvagzGC6
i7qtF+o2M9RtZpS396GivQ8VHX2oaDejoq0X1R19qDD0QKXrgLJej9wKLdKUasSn
ZSM0IQUcXjiOs7j4+AQNn/gy4ENjICUlBQUFBdBoNGhqakJzczPKy8tRWFiIgYEB
qFQqDSFkAyHk94SQta7bRI+/GwBCyIqCgoL3l4rf0tKCiooKlJaWoqCgACKRyN2/
mUwmIiIikJmZCa1Wi/7+fthsNjgcDjgcDly5MonhsXG09w2j0diL8nMdyK9pQmZF
PTLUWshKayEtqYHoTBVSlZVIKSqHoLAMp/NVSMwrQXzOGcRlFyMmswgxmUWIyshH
lDwfEem5CJdlI0yWA540CzxJJkLECpwSyREszECQMB1BwnQEJKfBXyADVyAF97QE
nCQxOElisBPFYCWKwExIBTMhFX7xqfDjC90YcYvocSmgx95DnBD02EWMOCH8+Klg
xovAjBeBFS8CO0EMTqIE3NNScE/LECBIR1ByOk6lysGTZCNClovo9Hzws4qRmHMG
yXklSC1QQVRYCmlxGZKzChEjliOILwA3PArH2f746AQNtIBgHPVlIDEpCTk5OVCr
1aipqYFarUZeXh5ycnLgcDgQFhYWQghZTwh5yhWCB5eeE9wzANXV1bpbt25Br9ej
uLgYubm5yM7OhkgkApvNBovFAoPBQGBgIIRCIZRKJTo6OtDX14fu7m7UNeugUFUh
VlGMEHEWuKdloMel4Fh4PD4OisQHgeF4LyAMf/Pn4TArBO+wgvFfzGAc8gvCXxmB
OEgPwEFaAA7Q/HGA5o/9NO4XfDnYf3LRvhPLnFy098RXOH4PPl/8vceHfWePD5va
48OmvI+xlji9jzGd3p+yFh1jOb2Psag9PkvYd/b6cLDXh/2F40s4i6+u9/cd57iw
sP84B/tPcLD/JBeHfP1xmOaP9/yC8Il/GI6HxMAvOhH+8SkITBTBPz4FrJgkMELC
cYzljw9P0PGxLwNHaH5ISEx0t9uSkhLk5eVBKBRCpVKhu7v7AiFkCyHkWdfdwdLD
Incr+FIAioqKnjaZTOjq6kJOTg5kMhnS0tIgEokQFxcHDocDOp0OJpMJHo8HPp8P
uVwOuVwOoUgMLj8ZHwRF4hAnGHsZ/thD58Lblw3vk2zsOMaY+8tHx69s+sBn/M/v
fzry8ntHh186fKTvxXc+6dn4ztHOF9450v78gY9a/2Pf+7o/eb/X/Mzudxuffuuw
9t92vlP7ux2Hqv9126GKf9l6UP3Pmw+U/ubNA2d//Zd9Z598fW/xE/+5t/BXm/bk
//K1PXlrX/XOfvzlt7Iee3lX5s9f2iVfs3Fn+qMv7khbvWG7bPWGbdKH128VP+i1
RbTKa0vqque3CD2fezPFJdnz+c0Cz+c3C1Y+v1mwym2LYJXXogeXechrq+Ahr62C
h722CB5et1Wwet3W5EfWb0tZ88K21Mc27hA9/vIuyT++skv2q1ffTn9yk7fit6/v
y37qjf35v9v616I/bj909pmdh8uf2/232o0HP9Zt/vBk2+uHj5i3fXDM5n2EcXPv
p37Y+6kfDvr64112CD4KisTR0DgcCY6ETwAPHzE4eO+kH04E8XCUwYJAIIBCoXD/
UJOTk8Hn89HT0wMulxtFCHmFEPI0IeQJ16bQgxDywFcGQCKRMNvb21FcXOx+UCIU
CpGQkAAOhwMOhwMajQY2m43AwEDweDz4+/vjuC8N+3y5eJvGxpvHfKc2fnhk4JmD
77b8duf+6sdf33Vm1QtvZHmse0Ph4fWG3MPrDbnHujczPNZvTvfw2iLz8Noq8fDa
Kl60TezhtU3k4bU91WPddqHHuu1CD69tKR7rtie7CDyXrN8h8Fy/XeC5fsdpz/U7
Tq/csCNp5fodSSs37Exc9cLOxFUbdiU8uGFXwkMv7Ep46MW34pc8vPGt+NUb34p/
ZOPbi17aHf+zl3bzH315N3/NK978Na9483/+yh7+Y3/ew3/s1b38X7y2l/+L1/bx
H39tH3/tpn38tZv289duOsBf+z+M3WlYU2fe+PEzz6jsJ+eYHLRqrbXbdJ+280xn
puu0tdZudm+1BYqyJRD2NSyRVVlFVBRBZA8ECIFAgOwJCQmBQAIhEEIIIUSwrd1m
ns50tvv/4j4BtJ2Z/4vP1evqddm+4MtZfvd9H1/a6pNNL28o3/nysU2vHKvY+cqx
ip0vf3J258ufVOIvfXwO/+NHVfiLH1Thz793Hn/unYuUP7x56b7Xj/U9+2nk/NuM
ZPAmIxm8E5MGPkzMAsdST4GQVDYIS80CIYnpIDghFYSlZoG4lDRw/vz5jUFTZWUl
yM3NBfX19aCrq2scQZA3EQT5Pfk8QJBDol/+bAC1tbX9QqEQnDt3DhQVFYGysjJQ
Xl4Ozpw5AzIyMkBycjKIj48HiYmJICEhAcTGxoIoBgO8x0wFL0cnXN979AOh10uv
NXq9/Hr99pfeqNv+4ls125596/K2Z96u/uUfjlb/8vfvXPzl79+5sO0P71Zte/b9
c9t+927ltj+8V7H9D++XbX/mg9Ltz3xQuv3ZD0p3PPth6Y5nPyjxeu7DYq/nPir2
fu6jMz7Pf3za54WPT/u+8PFpvxc/KfJ78ViR34ufFPm/eKwo4KXjhejLxwuxVz4r
wF75rGDnoaD8nYeC86mHQ/Jpr32eRzsSmkc7EppHHAnNCzxyIi/wjZPQm+G5gW+F
5wa+FZEb+FZkbuDRqNzAo1G5xNtRucTRqFzaUUYu7Sgjl3qUkUs9Gp27852YXPwd
Zi7+LjMXe5eZS3k3Npfyblwu+l5cbsB78dD78bkBHyRA78fn+b+fkOf/QUKe3wcJ
eX7vJ+RD8QV+78UV+rwbW+R9NOa011v0M9tfDy/xOXKy1P/w5+UBh45X7nsjuPn5
0Nil1xlp4I2YdPBmbAZ4LyELfJbEAkHJmeDTRBYISckCEWlZoLi4GFRWVoJz586B
4uJikJWVBdhsNhgfH/+nv79/EIIghxAEeYK8FXgjCLLtZwNoamq6UV9fDwoLC8Gp
U6dAUVEROHPmDCgoKAAsFgskJSWB2NhYwGQyAYPBAJGRkeCj6ETwRlLmF16H3mjz
fvWtZq/Dbzd6HXm3dvur71dvf/nD89v/+HHl9hePV+x44XjZjhePl3r/8dNi75c+
O+37clCR30tBhf6HQvIDDoXkoa+G5qKHT+Rir53IxY+Endr5ejib+kZEDvFmRA7x
VmRO4NtR2bvepmfvOsrI2v1uTNbu95hZu9+Pzdz9flzm7g/iWbs/SGDt/iCRtfvD
RNauj5Iydn2cnLHr4+SMwE/S0oljaenE8Yw06vGMNOqnmWn4p5lp+KdZadhn2WmU
oJw0SjA7jRKcm0b5PC8V/Tw/Ff28IDUgtDA1ILQo1f/kaSjsdKpf2JlU3/Azqb4R
xVBUcapPVEmqT1Rpqje9NNWbUZrqzShN82aUpnnHlKV5x5SleUV7lKZ70UsydjBK
MrzoJawdjBLWdnpJ5vaIM1nbThblbDtRyN4WnJu77XhW3o6Pkot832UWB7wRVv70
iaTxV2MywKsxLHCYyQIfxGeAT5KywCdJWeDT1BxwIjMfpKSlbQy5CgoKNq7U3d3d
IDg4uAJBkHfJW8G95JRw+08CqK2t3dPQ0ADKy8sBi8UCWVlZIC8vDxQWFgIWi7UR
wNYf/ucRUeDtxCzwyInIEa/Db7d5v/5Oo/eb79d5v3msasebIcXeb0Xk+71BZwe8
FcPCjsam73w3LpX4IDE58MOUpN2fpCXccSwjYd+nrPh9n2XF7QvOitsXwo7dF3Iq
dt/nubF7T+Qz954oYO49WRSz5+TpmDvCTsfsDi+O2RVeEhMYWRZNiyyPpkZVRFPp
ldFUxrlonFEVjUefj8ZjLjKw2EsMSuxlBiXuMgONr2GgiVfoAUm1dP+kWrp/ch3d
P+Uq3S/1Kt03/VqUb8a1KF9WQ5RvZmOUT1ZjlE9OU5RPTlOUF7spyutUc5RXbnOU
V15LlFd+S5RXQWuUV2FblFcR6TQnyusMJ8qruB0q7YjyKuuI8irjRnmVc6O8yjuj
vMu5dO8KLt27rIPhXc7dVNYR7V3WEe1d3B7jdYYT41XQxtyR2xK3Pac5bnvq1UQf
5oUU3xP5LPRYKvt/I9LGD8Vmg0Ox2eBofCb4IDETfJScA46lnQKfZxWChPTMjYlo
dnY2SElJAUwmE5w/fx5ERET0IgjyKYIgh8lngYCNucDWAM6dO/fc5cuXQW5uLkhO
TgYZGRng1KlTIC8vD2RmZgIWiwUSExNBTEwMiIqKApGRkeBDRiL4iH36H96vv9Ph
/fp7HJ+jH13zfvv4ZZ93w0v9PkzMwY5np1KD8+L2hZ9h3MU4G3F3fPXJA4k1Jw6k
1H++P7Xh872pzSF3pLWE7EpvCw7M4AQHsjqCiUxuMC27O5iWwwum5vQE7zzFD96Z
1xeEF/QFYYWCIGpRf9DO0wNB+BlhEF4iDMJKB4OwClGQ/1lRkG+lOMj3nDjI97wk
yOeCNMjnojTI55IsyOeyPMjnijzIp1YR5FOnCPKpVwb5XFNBjSNBPk3qIJ9mdZBP
qybIp200yIczGuTTPhrk26EN8uXqgnw7x4J8u8aCfHljQb49+iDfnvEgX/54kG/v
RJBvnyHIVzAJ9U8G+QqnoEFjkO+gCRoyBfkOT28xA//doCnIVzgd5DswHeQrMAb7
CozBvr2TIT5NuhN+F9RhvjlcBp5QnYCGFWY+zzy1/kp8LjgSnw3eTcoG7yfngI/T
8kBw9mkQx8oBubm5IDc3F2RmZoKkpCQQHR0N8vLyQHFx8QSCIGHkVeAJBEFwcsHo
f255/SspKfmksrISpKeng7i4OJCamgqysrLAqVOnQFZW1s8G8CaTBd7PK/nS6+0P
O7yPftzq/c5ndd7vRFT5fZRcgIfkp+0KL024M+4SY09SfWRgels4LavzJPVUbyg1
ry8UL+z/nFI08PnOM8LP8eLBz7HSwc+xiuEQyllRCFopDkHPS0LQ89IQ9KI0BK2W
haCXZCFojTwEvaIIQesUIWi9MgS9pgpBG0ZC0KaREN9mdYhviybEt00T4ssZDfHt
0Ib4cbUhfp26EL/usRA/3liIH3882K93IthPYAj26zcE+w1MBvsJJ4P9hMZgP6Ex
2H/QBA1NQ8MzwZjITJoN3imxBFMlc8FU6VwwLp0PxmXzwbjMGozLFoJx+UIwLrcF
UxW2YKrSHkxV2YOpqqVgqnIxhKq0h1BV9hCqagkaWQqhjjhCqGrH5j/VyyG40v45
RWn/3FcwH+rXZD6564Iucv9pQczu9GvJTySW9b+SVAheSzwF3k05Bd5LyQUfswpB
ELsYMLNzAZvNBjk5OSAjIwMkJiYCBoMB0tLSQH19/RKCIFEIgnxIzgUCyavAtlsC
KC4ujikuLt64zCcnJwMWiwWys7N/NoCTkXRwOC4HvJ592un99ift3kc/a/Z+P+Ky
z4dJ5dhnuew99HPx+1MaogPZvAhaYW84XjZ4EqsUnaBckIai1bJQtFYZil5VhaL1
I6Fow0go2qQORVs0oWjraCjK0YaiHdpQlKsNpXSNhVK6x0IpPH0opWc8lNI7Hkrp
mwil9BuggclQinAq1E9oDPUbNIX6D5pC/YemQ/2HZkKx4ZlQTGQOpYpnQ2liCySZ
C6VJ5yGZNTRQvhAaqLCFBioWQwOVHnZIZQ8NVC2FBo6Q1Euhgerl0ED1cihNvRxK
0zih0RVI6+EirYbSdKuhNJ07lDbmDqWNXYf010Np+rVQ2jhEjK+HEhMQbeJGKK5w
nwgcuHHizhZ7+D2XdVH7zwiYD2ZfvXgkswIcTi4E76TmgXfT8sCHmUXgs1OlICan
AOTk5ICsrCyQlpYGEhISAIPBAAkJCaCtre0rBEGiEQQ5jiDIM+SDII4gyI6tAfxP
WVlZdkFBAYiPjwcxMTEgMTERZGRkgKysrI0APHFERUWBz+hx4EhSLnghmb3gffSz
dq+jJxq9P4it9v04s4QWUph1d2Jt7B1ZXQysZDASvSQOR+uk4WiTIgxtUYZR2tVh
FK4mjNI1GkbhaaEeXRilZyyMwteHYb3jYVjfeBjWNwEJDGHU/skw2sBUGE1oDKMN
GsNog6Yw2uB0WODQTFjgsDksUGQOCxTNhgWKPSyQZB6SeljDAmXWsEDZAqRYCAtU
2LZYDAtU2jepljaNLIUFjiyHBY4sh9FGlsNomuUwmsYZRtOsQKMkrYu0CulWw2g6
dxhtjKS/HkbTr20g9OthxDhEm7gRho+shRGDN8Lv6lwLv6/eFHVvlTz6QEHnqTfZ
58Fr6WfA0bR88G56Ifgwqxh8mlsOGOyijV/UtLQ0EB8fD+h0OmAymaC9vf0HBEGY
CIIEIQjyPDkZpCEI4n1LACUlJWdyc3NBbGwsiI6OBgkJCSA9PX1jWTYzMxMkJydv
BPARPRG8nlIInopOn/d6+/MO7/fojd4fpV30P84uPhBVlnUwoyWOlj8YE3BRzkDb
RhiUTjUD69IwsO5RBtatZVB7xhi0njEGjT/OIHrHGUTfBIPoMzAIgYFBCCYZRP8U
gxiYYhADRkhoZBBCEzRoYhCD0wxiaJpBDM0wiGHzJtEsyQKJ5yDJ/CaplUHISHIr
g5AvMAi5bZNikWRnEEo7g1AtQSNLDGLEwSBGHAzaiINBUy8zaGrnJs0KNLrCoI26
IK2LQdOuMmg696ax61usMYixNQYxvs4gxtcZtPF1xk7tOiNQ8hXjAP8rxv2t1ugH
asdjdp+VJr2Zfxm8llkO3k4vAkdZp8EHOaXgeP5ZQM8tBpmZmSAzMxOkpqaC2NhY
QKfTQXR0NOBwOP9CECQWQZAQBEFeIucBuxAE8d0awC8LCwsrc3JyQExMzMblwzPw
2RpAbGwsiIqKAu/Sk8HraafBU8ysWe93wjq83o9r8P4482LAZ6dK7mVU5tyTyUnA
i4bjAmqUTApXzSR4OibRM0bSMwn+ONQ7ziR6J5hE3wST6DNAgkmof5JJ9E9BA1NM
YsDIJIQmaHCaNMMkhj3Mm0QWSDx3m3kmIZ1nElIrJLMyCdkCk5DZmITcYxFSLDIJ
pZ1JKJcg1RKTUDmYhMrBpKkcTNrIMqR2QpoVaHSFSRt1bdKuQjr3FteZtLHrTNrY
GpMYW2MS+nUmoV9n0sbXmTu168xAyU3mgb6vmQ+0LzEfrJ+MJapGEt4srP376znn
wFsZp8HRzGLwAbscHMuvBFFkACwWC6SkpGwEwGAwQGNjI8AwLBVBkM8RBHkFQZBf
kbuH/G4JIDc393JWVhaIjo4GdDodxMfHg7S0NJCZmfmTAOh0OnibngJezygGT8Zm
z3q/F9Xp9VFSk/ex7GosKL/0gdjzpw5kdaRgZ8RJ/nXKBApXnUB06xII3hjUo9/E
H08geiegPsMmwSRpChqYSiAGjAnEgCmBEJIGp6GhGZI5gRj2mIVEFkg8R5pPICTz
CYTUCsmsCYRsYQtbAiFfhBSLCYTCnkAoSSp7AqFyJBAqRwJN5UigjSxDaiek8Vgh
uRJoo64E2uhqAk27mkDTube4nkAb81hLoOnXN+Bj6wmBspsJBwRfJzzQ4Uh4sGEq
aVf1aPIbZ67935FTF8CbrGLwdlYpeO9UBfi4oApE5pXcEgCTyQR0Oh3Q6XRw9epV
sG/fviwEQU6Qr4KPkM8BAVsD2Jabm1vLYrH+YwBb63qDngqOZJSAX8dmm73fZ/C8
P05t9j7Ovkz7vKj8V/HV+Xdld2WgxeI0/3plKoWrSSW6dakEbwzq0W/ij6cSvRNQ
n2GTYJI0BQ1MpRIDxlRiwJmQDZgAACAASURBVJRKCEmD09DQDMmcSgx7zEIiCySe
I82nEpL5VEJqhWTWVEK2sIUtlZAvQorFVEJhTyWUJJU9lVA5UgmVI5WmcqTSRpYh
tRPSeKyQXKm0UVcqbXQ1laZdTaXp3FtcT6WNeayl0vTrG3D9emqg/Gbq3f3fpj7Q
sZz6cON02u5qXcaRkqbvX8u7BF7PLAVvZZeD9/LOgY+LLoCIvNKNALbepul0Orhy
5Qo4ePAgG0GQk+Ti0GMIgty5EQC5OrTt1KlTdRkZGYDBYAA6nb7xKnh7AHFxcYBO
p4Mj9DRwmFUKHmfmzHp9yOR7H2O1+XyWW7vrxOlzDyZcKrozpzs7oFSc5V+vYKEd
ahbRpWUR3TqIN8YieHqoR88i+ONQ7wTJwCL6PCah/kkW0T/FIvqNLGLAyCIGTCxC
aGIRwmkWMegxwyKGzKRZaNgCiTzmWIR4nkVISNJ5FiG1sgjpAsnGImQk+SKksENK
O4tQOliE0sGiKh0sqsrBoqqWWdQRktq5xQqLqnaxqBoXizrqYlFHV1lUrYebRdVe
Z1F1EE23xqKNQVT9OgvXr7MC5TdZdw98y3qAu8x6uGkmc3eNPuu1stbvXsu/DF7P
Lgdvss+Cd/KrwIdF1SA8vwxkZWVtjOuZTCaIjIwEUVFRoLq6Gtx///155CzgdQRB
fo0gyF0IgqC3B1CbkZGxcen4uQBSU1M3AniNng5eZZWCR2PZc94fx/d5H89q9wnK
q98dVnzhwcTLpftyunIDykSn/K8p2WiHmk10adlEtw7ijbEJnh7q0bMJ/jjUO0Ey
sIk+j0mof5JN9E+xiX4jmxgwsokBE5sQmtiEcJpNDHrMsIkhM2kWGrZAIo85NiGe
ZxMSknSeTUitbEK6QLKxCRlJvggp7JDSziaUDjahdLCpSgebqnKwqaplNnWEpHZu
scKmql1sqsbFpo662NTRVTZV6+FmU7XX2VQdRNOtsWljEFW/zsb16+xA+U323QPf
sn/V6WQ/0mxm77kynvtqGefbw0W14EjOWfDGqXPgnYKL4IPTl24JICkpCcTExGwE
cPHiRfDAAw9sDeAJMgDK7QHUpKenAzqdDqKiokBsbCxISUnZGAt7AvC8YrzKyACH
WGXg0dhTVu9PEvq9P8vp9AkuaLwjvPTSg4mXz+7N4RUFlIkL/BuU+WjHSD7Rpc0n
unWksXyC56HPJ3r0+QRfn0/wJ6DeiXyi15BP9Bnyib5JSDCZTwim8ol+IzRgzCcG
TPnEwHQ+Megxs2nIDA1bIJHHXD4hnssnxPOQZD6fkFjzCclCPiElyWyb5Iv5hNwO
Ke35hHIpn1Au5VOVS/lUlSOfqlreNOKE1M58qnoF0qzkUzWufOro6iatG9K586m6
6/k03Vo+bQyijq3n42Pr+bsVN/PvHvg+/8HOlfyHW2bz99ROFL5awf3u1dNXwWF2
JTiSex68XVgN3i+uAREF5f82gAsXLoD77rvPE8AbCII8Sb4K3hoAm82uTktL+/8K
gMFggFfpGeBlVhl4JPbUgvexJKHXZ+xu75DC5j0RZTUPJl05tzeHdyagXHQabVAU
4R3qIqJTW0R0kbp1RUT3GMTTFxE9JP44aaKI6DWQJiHBZBEhmIL6p4qIfmMRMWCC
hNObBmdIZmh4lmQhzRURorkiQjwPSeaLCIkVklqLCOlCESG1QTJbESFbLCLkJMVi
EaFYKiIUS0VUxVIRVemAVMvQiBNSO4uo6pVNGhc0ugpp3VtcL6JprxfRdGtFNN1a
EXVsvQgfWy/arbhZdFD4fdFDXStFj7RYivbUGs4cquj802tnroHDuVXgSN4F8FbR
ZfBecS2IzP/PAdxzzz25twVw989dAc7/twA8QwYGgwFeYbDAH9NLwcNxuXbv48lD
XkGn+N6hp1v3RJZffTDpyoU9bF5ZQLmo1L9BUYK3j5QQ3NESoktL0pUQ3WObePoS
okdfQvSMQ/wJqHeihOg1QH2GEqJvqoQQkPqNJFMJIfSYLiGEM9CgGRqahYYtm0Rz
myRzJYTEusVCCSH1sJUQssUSQk5SLJYQiqUSQrFUQlUslVCVDki1DI14OEkrJVT1
SglV7Sqhalwl1NHVLdwlVK27hKq9XkLTXi+h6dZKaLq1EurYWgk+tlayW3Gz5KDw
u5KHu1ZKHm61lOy5Oll2qLL7z4eLG8HhvIvgSMEl8NbpK+C9kjoQRd4CPBt2oqOj
b7kF7N+/PwdBkHByb8BTZADY7QGUpaWlgaioKBAVFXXLOHhrAJ4x4ysMFnghrRQ8
yDy17P1pqsg7OLfPO/RMx57IioYHk2sv78nhVQaUi876N8grUI6qguCOVhCdpC7d
pu4xiDdWQfSMb+JPkAxQn6GC6JusIPqmKggBqd9YQfSbKogBj+kKQuhhhoZmb2Op
IIbnKggRSTxXQYjnKwixtYKQWCsIycImqa2CkNkqCNkiJF+sIORLFYR8qYIqX6qg
KpcqqEpHBVW5DKlII07SCqReqaBqXBVUzSo0ulpBHXVvoI1er6Dp1ipourUKqm6t
Ah9br9ijuFlxUPhdxaPdroqHWi0Ve65OVb5yjvfXwyXN4NX8S+C1wsvgzTO14J3S
ekDPL/2PAezevTuLDODfXwFOnz5d+HMBZGRk3DJm3BrAs6kl4F5G9or3Z2lS78/z
B7xPnOnaE1XR8qvk2ro97O4LAeXD5/0b5FVom6qK6BitIjo9tFVEl440VkV0j1UR
vLEqgqeHesariJ6JKoI/UUXwDVCvoYronawi+qYgwVQV0W+EBkyk6U3CGWhwFhry
sFQRw5YqQjQHieeqCPF8FSG2bpIsQFIbJFuE5ItVhHypipAvVVHlS1VUxVIVVeGo
oipJqmVoxElagdQrVVS1q4qqWYVGV6uoo+4NtNHrVTTtWhVNu1ZF1a1VUcfWq/Yo
blbdM/h91aM8V9XDbXNVe+uNF16u4v/91bIW8ErBZXC46Ap4o+QqOFp2DTDySjYC
SEhIuCWA6upqgGFY+m0B/PQZIC8vL9sTQGRk5M8GsLWwQ4xM8PuUYvBwYoHbOyRd
7h1aMOR9sqRnD/0s51fJtdf2sHmXA8qHL/k3yKrRNlU10aGpJrijUKe2mujUQV26
aqJrrJroHqsmeHrSeDXR4zEB9U5UE72TUN9kNdE3VU0IpqoJgbGa6DdtGpgmzUCD
ZtLspiFLNTE8B4nmqgnRPCSerybE1mpCvABJFqoJqW2TzFZNyOzVhMxeTZXZq6mK
JZIDUi1v4aymqlaqqSMktauaqvFYraZq3NXUUYg2er2apoWourVq6th69V7l19UH
hd9VP9bjqn6obb56X73p0svne//1alkreLnwCnj1TB04UnINvF3eCKLzim9ZB/Ds
16DT6eDy5ctg27ZtSVueAZ742QBycnJSPM8AkZGRICYmBiQlJf2HAFjg6eQz4LGU
0+veIRkqrxOFIu+wUsEd9LPcXyXXNu9l8+oCyodq/a/JatBWZQ3Rrq4hOjSk0RqC
q4U6tTVEp66G6NLVEN1jJH0NwRsnTUD8iRqCb6gh+JM1RC+pbwoSGEmmGqLfYxoS
mm8zW0MMWTYNW2qI4bkaYni+hhDN1xAiaw0h9lioISQLNYTEBslsNYTMXkPI7DVU
mb2GKrfXUOVLNVS5A1J6LNdQlU5I5ayhjqxAahdpFdKs1lA17hqaxl1DG71eQxu9
XkPVrtVQx9Zr9ipv1twz+F3N4z2rNQ+2zV/Zf81U/9KFfnCoggNeKqoDh4rrwZGy
RvBWeRNg5p75yTOa5wpw+fLlfyAIknDba+BmAJ5JIIvFir49AM+KoCcAz1NmdHQ0
OBTNAk8lnQa/zij9wiuEpd5+olCyPax0YDejsvuB5Nq2vWxevW/Z0FXfa7I6v1Zl
Hd6ursM7NKTROpyrhTq1dXinrg7v0tXh3WMkfR3OGydNQPyJOpxvqMP5k3V4L6lv
ChIYSaY6vN9jGhKabzNbhw9ZNg1b6vDhuTp8eL4OF83X4SJrHS72WKjDJQt1uMQG
yWx1uMxeh8vsdRSZvY4it9dR5Et1FLkDUnos11GUTkjlrKOMrEBqF2kV0qzWUTRu
aPR6HWX0eh2qXaujjK3X7VHerLt78Lu6x3tW637VNl+3/5qx9YWLA+BQBQf88fRV
8ErJNfBaWRN4s6IZxJ0qumVOs/UKUF1d/ZfbArh1EORZC0hPTw9NS0vb+MNbVwRv
DyAmJgYcjs4ATyQUgSczy296fc4a3X6yUL49vGxoN72S/0BKXcdeNq/Jt2yw0bde
2uDXomjAOeoGvF0DdYw24FwPbQPeqYO6xqBuPcTTN+C8cahnvAHvMTTgfFLvZAPe
N9mA90014ALjFiaofxoamIGEZtJsAz4424APWaBhSwM+PNeAD8834CIPKyRegCQ2
SGprwKX2Blxqb6BI7Q0Umb2BIltqoMhJCgekXCY5GygqZwNFtdJAGVlpoIy4ILWr
gaJebaBoVhsoGjc0er2BMnq9AR293kDRrTfsVX3dcLfw24Zf810N93PmG+5umOp6
rloIDlW0gxfP1IOXSxvB4YoW8MbZFpDILvjJoM4TwMWLF78nAziJIMgRBEEe/9kA
0tLSPvz/CSA5ORnExMSA1xgZ4PH4IvCbnMrvvD7P1G0/WajaEVYu3kU/J7g/ua57
L7u7zbd0sMX3qqTZr1nRjLeNNOMcNdSuacbbR6GO0Wacq4U6dVDXWDPepW/Gu/XN
ePc4xBtvxnkTzXiPAeIbmvHeSahvimTcJJiG+megAQ9zMy6cbcYHSUOzzfjQHDQ8
14wPz28SWZtx8cImyUIzLllsxiWLzRTJYjNFZictQQrHFsvNFIWzmaIkqVaaKSMe
rmbKyGozRe3hbqZorjdTNNeb0dHrzRTdevNexdfNdwu/bX6Cv9p8P2eh5eC1qf5n
Lw2BQ2c7wAvFDeClsmbw6tlWcORsK0jJyf3JUnBkZCRgMBigqqrqKwRB4m9bC9j/
kwBSUlKOpKenAwaDASIiIkB0dDSIj4/fCCA7O/uWxYY3YzLAo3GF4Lfsqj95ncga
3x52WrMjvEIWSD83eH9yLX9fTmeHX6mw3adOzPFrknPw1hEOzlGTNBy8ndQxysE7
tBycq+XgXB3UOcbBuzz0EE/PwXkTUM8EB+8xcHD+JNQ7tanPCAlMUP/MbcwcXGjm
4MJZaGiWgw9ZOPjQHGmegw97WDm4yMrBxQuQZIGDSxY5uGSRQ5EscihSOyRbguQO
SOHgUBTLm5RODkW1smnExaGMrHIoag83h6KBUM11Dqa7wdmv+IZzt/AbzpO9q5z7
OAuc+xoMkj9cGgaHKrnguZIm8MeKVnDoLAe8VtkG0rNzblkKjoqK2vgZVlZWuskA
tq4G3nn7auD/JCUlPbs1gK0rglsD8Cw3Ho1JBw/HFICncy/84HUiy7A9vEi3I+Ks
kqBXiu5PrhXcmd3Z7XdmoNO7Vsz1a5Rx8RYVF28bIam5OEezqX2Ui3eMcvEOLcTV
cfHOMZIe6tZz8e5xLt49wcV5pB4DF++Z5OJ8jyku3kvqM0GCaah/ZtOAmYsPzEKD
s1x80LLFHBcfmoeG57n4sJWLixYg8QIXFy9ycfEilyJe5FIki1yKxM6lSEmyJUju
IC1zKYplLkXh5FKUTi5FtUJyQSMuLmVkFVK7uRS1m4tqrnMx7Tp3v+Ib7t3Cb7lP
9a5y721f6Ly/wTDy9CUROFTZCZ4rbQEvVnDAK5Xt4PDZNpBJ7tjy/Gw8AcTExIDS
0tKlLQG8iiDIw+RysP8tASQmJj6Wnp4OoqOj/2sAsbGx4L2YdPBAdD54Ou/Cj14n
s6a2RxTpd0ScVdPo56T3JdUO3pndyfc7M9DjXSvm+TXIeFiLioe3jZDUPJyj2dQ+
ysM7Rnl4hxbi6nh45xhJD3XreXj3OA/vnuDhPFKPgYf3TPJwvscUD+8l9ZkgwTTU
P7NpwMzDB2ahwVkePmjZYo6HD81Dw/M8fNjKw0ULkHiBh4sXebh4kUcRL/IokkUe
RWLnUaQk2RIkd5CWeRTFMo+icPIoSiePolohuaARF48ysgqp3TyK2s1DNdd5mO4G
b7/8G97dA9/wnupd5d3DWej5VcOE/reXJeBQZSd4pqwNvFDZAV4+xwVHzrb95Ooc
GRkJIiIiQGxsLCgoKJgjAwglD4g8hCDI3p8EwGAwDmRkZNwSgGdF0BPA1vvMx8wU
cD8jH/wu78I/vE5mmbaHF03siKwcpTKqFPcl1Q7vz+b2+Z8e6PW+Msz3aZDy0SYl
H29VQW3qTRwNH28fhTq0JB0f5+r4eKeOj3eOQV1jfLxrnI93k3gTfLzHAPEnSVN8
vNfDCPVNQwKPGT7eb+bjAyShmY8LLdCghY8PzvHxoflNw9ZNYisfF9v4uNjGp4ht
fIpkkU+R2PkUKUm2BMkdpGVIscynKJx8inIFUq3wKSoXaRVSu/kUtZuPqq/zd+pu
8O9SfMM/OPA1/0n+Kv9uzkLvgw0Txt/WSMAr5zrBM+Uc8HwlF7xU1QnerGjeCGDr
OkBERASIi4sDmZmZUwiCxN22I+iO23cE/U94eDj+/xtAfHw8+DQmEdxLzwNP5134
l1dY1sz2iKLJHVGVup2Mc6p7k65I9md3DPif7u/3rhkW+FyTCNBGhQBvUUGtIwK8
VQ21qQU4RwO1j5K0ArxDJ8C5OgHOHYM6xwR4p16Ad41D3eMCnDchwHkGAd7jMSnA
+VMkI9RnIk2TZgS4YEaA95uhAbMAH5gV4AMWAS4kDc6R5gX40LwAH7ZCIqsAF9kE
uMgmoIhsAop4EZLYIekSJFsSUGSOTfJlAUXh3KRcEVCULgFF5bEqoIy4BZQRtwBV
uwU7dTcEdym+FRwc+FrwZO+q4GC7rf/hxom5316RgpequsAfKjrA8+e6wB/Pd4Oj
5Y0gOzt7Yzv41gDI43taMoAQBEE8H47YfXsAv0AQ5H9YLNY/PQFsXRDauifAM2wI
jUkA90Tlgf/NPQ98wrMt2yOLTDuiKsdxepXmnsQriv1Z7cMBp/uHvC8NCX3qxUK0
US7Em5VQy4gQb/VQC/E2jRDnaIQ4ZxRq1wrxDg8d1KkT4p16qEsvxLvGhXj3BMQz
kCaFeA+Jb4R6TVDf9CbBjBDvN0MDZiE+MAsJZ4W40CLEhXPQ4JwQH5oX4kNWaNgq
xIdtQnzYJqQM24QUsU1IES8KKWI7JPVYElKkDkjmEFLky0KK3CmkKEjKFSFF6dpi
VUgZgdARtxDXfSE8IP9WeK/wpvAJ/qpwf7tt6NFGg/3pKzLwQhUP/P4sFzx3ngde
vMAD75XV/9sAkpKSwLFjx+TkptBgBEH+SB4P+8mm0F8gCPKL9PT0r5lM5i0B3H4+
wLMeEBETCw5G5oEnsiuBfyTb5hVZaN5BPztJoVeNHUyoUd2VxZEEFAnE3tVDIp96
sQhtkIvwZiVJJcJbRqBWNdSmFuGc0U3tWhHeoRXhHTqIqxPh3DER3qmHusZFePe4
CO+eEOE8w6aeSdIU1Gu6zbQIF8xs6p8R4f2z0MCsCB+wiHDh3KbBeRE+ZIWGrSJ8
eEGEDy+IKMMLIorIJqKIFkUUMUlih6RLJIeIInOIKLJlEUW+LKIonKQVSLkioihd
IopyVURRQeiIW0TVfSE6KP9O9IDwpuiJXpforo5F8SONE67f1cnBc1U94HfnusEz
F3rACxd6wEeldSA7O/sn6wAREREgNTUVfPrpp4NbAngRQZCD5Clhn598HCIjI2Np
awBMJhMkJSXdEoDnf0RnMMDBqALwWGYFoDByHV6RRZYd9LMmlF41cXfCFc2BLI4c
LeiTeVcPSn2uiqRog1yKNymhZpUUbxnZ1KqW4m1qKd6mgTijUrxdS9JBXJ0U545J
ca5eineSusaleNeEFO/2MEhx3iTUMwXxjVCviTQtxfumpbhgBuqfkeL9ZinePyvF
B2al+IBlk3BOig/Obxqel+LDC1J8eEFKGV6QUkQ2KUW0KKWISRI7JF0iOSDZspQi
X5ZS5E5IsQIpV6QUpQtSrUpR1ao0YMQtpWm/kB6UfSd9SHhT+uveVeldHXbZow3j
N56uU4Bnz/eCp6t44JmLveC5i3xwvKTm3wbAYrHARx99xPuv5wI8MjIyDLGxsSAi
ImJjQejnAvCsB9zLKAQPp5eCnTF5q16RhfM76Gdn/OnnJw8k1OgOZLaq0Pw+pfcF
ocKndliBXpMq8EYF1KRU4M0q0ogCbxlR4K0jCrxVA7VpFDhnlKSFOrQKvGMM4o4p
8E69Au8ch7onSIZNvCmoxwjxTZt6pxV43wwkmFHgArMCF8wq8H7SgIU0p8CFcwp8
cB4amlfgQwsKfGhBQRlaUFCGbZBoERLbIYldQZEsKSgSh4IiJcmWFRS5c4sVBUWx
oqAoXJByVYEqVxUBKrdi1+iXintk3ykeEd5UPM5fVRzodCgebRz/5ndXFeAPF/rA
b8/zwe8v9oFnL/aCkDMXQXZ29k/WAcLDw0FOTg54/fXXW8kAPiNPCO8nPyjp9XMB
SGJjY0F4ePjPrgd47jWe9YAHoovAg6klgGDmrXlFFizsoFfM+tKrjHfFX9YfyGxV
o3m9I97nhSqf2mEVWi9V4Y0KqEmpwptVpBEV3jKiwltHVHirBmrTqHDOKEkLdWhV
eMcYxB1T4Z16Fd45DnVPkAybeFNQjxHimzb1TqvwvhlIMKPCBWYVLphV4f2kAQtp
ToUL51T44Dw0NK/ChxZU+NCCijK0oKIM2yDRIiS2QxK7iiJZUlEkDhVFSpItqyhy
5xYrKopiRUVRuCDlqgpVrqooI27V7tEvVQdl36seF95UPc5fVe3vXFI91jT+p6ev
KsDvLwjA/17oBb+v7gfPVPeBsKJzIDs7+5btep4A8vPzwTPPPFOLIEgMeUL4GfIV
8NajYVsC6IiPj///CiAmJgY8HFMI7k8+DXbF5X/pFVGwuINeMedLPz+zP/6y4W5W
qxbL4496n+vX+FwZ0gRclWiwBjnUqNBgjUqoSaXBmkktaqhVrcFaNRqsTaPB2rQQ
R6vBODoN1j6mwTrGNBh3TINx9RqMO67BujwmNFiXAeqehHhTUI+RZNJgfJMG652G
+qY1WN+MBuszazCBWYMJZjVYv4dFgw3MaTAhaXBOgw1aNdigVYMOWjXo0IIGHbJp
0GGSaBES20lLGlSypEElDg0qdWhQ2TLJCcmdGlS+okHlLg2qWNUEKFY1FNV1zd7R
rzT3Sr/X/HrwK81j/FXN/k7H6GNN+h9/d1UBfnNRAP63uh/87pIQ/KFaAKIKyjeO
hHvWASIiIkBERAQ4ffo0eOihh6rIAI6TXwq5A0EQCoIg238SQGZm5iVPABERERsn
hH5uHBwTEwMeiy0C9yQUgV3MvK+9IvOXdjDKF7wYVbN3xl2aOpDRPLbzVI/O+6xA
61MzqA2oE2uxazKoQbGpUanFmlRQ8wjUotZiLRot1qrRYq2jUNuoFmvTajGOTou1
67RYxxhJr8U6x7eYgLoMUPcUxPMwarEekxbjk3pNWqx3Rov1mrVYH0kwS7JosX6L
FhuYg4RzWkxo1WJCqxYVWrXo0ALJBokWt7BrUdGSFhUvaVHJkhaVOLSodBmSLWtR
mZO0okVlLi2qcGkDFC4tReXW7tN8qb1H8r32icGvtI/yV7V3dS3rHm+a+Ofv6xXg
yeoB8JtLQvD05UHw+0v9IDav+JYAPFPAiIgIUF5eDnbt2lVMHg49hiDI78g3gFtP
B3sUFBQUJiQkbPwH/l0AnpHjU7GF4O64ArCbmfedV2T+8g562eIO+vn5vXGXpg9k
NBmop3jjPhV9ep/LQn1ArViP1cuga3I91qAgKfVYo1KPNSn1WPPIpha1HmtV67HW
UahtVI+1afUYRwe16/RYx5ge69DrMa7HuB7rnCAZoO5JiDdFMuqxHpMe45N6TXqs
dwbqm9FjfWY91jcLCWb1WL9Fj/XPQcI5PSa06jGhVY8KrXp00KpHBxf06JANGl6E
RIt6VGTXo6IlPSomSRx6VLq8hVOPypx6VLYCyV36ALlLj6uu6+9Uf6W/T/Jn/ZOD
X+kf4bv1d3U6DI82TYDfXVWAJ6qF4MnLg+C3NUPg6UsDIOkU/CjE1mN7nme4qqoq
8Itf/IJNBvAJeTzc82XxX/7cFSAhMTFxI4CfGwd7DogwmUzwu/gCsJ+ZB/YlFP7Z
KzJvZQejdGkH4/zCnrhL5gPpTVPEKd6kT3mfwefSgMH3yrABq5casHqZAbsmN2DX
FFCDwoA1KqEmFdQ8YsCa1QasRW3AWjRQq8aAtWoNWJvWgHG0BqxdZ8DaxyCunjS+
qdMAdU1C3VMkowHjGQ1YjwnqNRmw3mkD1jtDMhuwPpJg1oAJLAasnzRgMWADVgM2
YDWgA1YDOmg1oIMLBnTQBg17LBrQYTskshtQ8ZIBlTg2SZcNqNRpQGVOAypbgeQu
Q4DcZcBV1w371TcN90r+ZHhq8EvDg/xVw8Euh/mRZgP4/VUFeLx6EDxZMwx+c2UY
/PaSEGTksH9yIsjzFldZWfl/CIJkIwjCQBDkYwRBfkM+APre8oEIj+Tk5KCkpKSN
14j/Ng5+PiEP3Bl9CuxPKvqLV2Tu6g5GyfIOxoXFO+IuzR1Ia5gOzOky+pT1Gn2q
B4y+l4eN2FUpVC83Ytc8FEasQWnEGpVGrFEFNY0YsWa1EWtRG7EWDdSqMWKto0as
TQtxdEasXWfE2seMWId+E3cc6jRAXZNQ99QmntGI9ZggvsmI8aeNGH/GiPV6mKG+
WSMmsBixftKAxYgNzBuxgXkjOjBvRIVWIypcMKKDpCEbNLxIshtRkd2IipaMqNhh
RCUk6bIRlTq3WDGicpcxQO4y4qrrxrtGbhrvlfzZ+NTgF8YH+G7jwa4l60PNU+Dp
qwrw2KUh8OsaEXiqVgyeru6/5bls6zpAVFQUKC8v/5IMgI4gyEfkjmCM/ELIL34S
QGJi4pGfCyAlJWUj6QJp+QAAIABJREFUAM8wKC4uDhxKOAX20Nng7uTTP3pF5rp3
MEpWdjDOL+1iVs/flXptZld217RvCd/kc7Hf5HtpyITVSUxYndSEXZWZsHr5pmsK
E9agMGENSqhRZcKaRkxY84gJa1ZDLWoT1jJqwlpJbVoTxtFB7WMkvQnrGIe4E1Cn
AeqaJE2ZsO4pE8YzQj1GE9YzDfGnTRh/xoT1mjf1zZowgQXqt5iw/nkT1j9vQvvn
TeiAFRIuQEO2LRZN6JDdhA7bTahoCRI7IMkyJF02oVKnCZWumFDZiilAtmKiKtdM
d43cNN0r/rPpKeEXpgf4btPBzsWlB5qnwO+uysGjl4bBr6+IwZO1EvDshZ6NGcDt
6wAMBgMUFxcvIwiSRX4h5ANyOxiF/FLYTwOIjY39TXJy8i0VecbBtwcQHx8Pjibm
gN2ROeBgyul/eEWeWtvBKF7dwahaDmRW2/an1Ft2Z3NnfYt7zN4X+82+lwbNAVfE
ZqxOYsbqZGbsKqlebsauKaAGJdSoMmONI2asacSMNamhZrUZa9aYsZZRM9Y6asba
tCSdGWsfI+k3dUxAnQbSJGnKjHVPmbFuI9RjNGM9JjPWM02aMWN8Uq/ZjPXNmrE+
C9RvMWP982asf96M9s+b0YF5MzpgNaPCBWjQBg3ZzOjQohkdspvRYZJoyYyKHVss
m1HJshmVOM2oZMWMylbMAbIVM1W1Zr5L9bX5XtGfzE8JvzDfx3ebD3Jtq79qmQK/
vaoAj1wWg8dqpeCJWgl4qaprI4Dbx8AxMTEgNzfXgiBIJoIgEQiCvEduBwtAEMTr
Zz8TFxkZuT8lJWXjVWLrOHhrAOnp6SA+Ph58nMgCu8KzwcGU0//yimDf2ME4c31H
dJWLxqy2706+On9HVsec32mexft8n8WnWmgJqBFZsFqxBauVWrA6GXRVZsGuyi1Y
vdyCXVNADUoL1qCyYI0qC9Y4AjWNWLAmjQVr1liwFo0Fax21YK1aC9aqs2AcjzEL
xtFD7eMQ13CbSQvWNbWJN2XBeCYLxpu2YD0eMxDfbMF6zRasdxYSzFowwZwFE8xZ
UMGcBe2ft6D9Vgs6QBIuQIM2Czq4CA0tWtBhuwUdXrKgIpLYYUHFyyQnJF2xBEhX
LDuVa5a7FDct9wx/Z3m8f81yoMdlOdBuvXF/kwE8UScHD12WgEdrpeDXVyTg1fLm
nz0P4FkKTklJGUcQJIPcD/gOuRvIH0GQHT8bwG9+8xuf1NTUWwLwTAM9AXjuOQkJ
CeBEQgoIPJkNDiQVAu+InK920E+v7aBXuqkxF5d3J9XZ7sjkWP0Kuq3eVX1WnwsD
1oCaYSt2RWzFaiVWrFYK1cms2FW5FauXW7F6BXRNacUaVKQRqGnEijWprVizBmoZ
tWKtWqhNRxqzYhxS+zjUMQFxDaRJK9Y5acW6pqDuKSvWbYJ4JivGm7ZiPTMQf8aK
8c1WrHcW6pu1Yn1zVqxvzor2zVnR/nlowAoJF6BBG2kRGrJb0WG7FRUtkRxWVLRs
RcUeTmuAZMUaIHVZdyrXrPtlX1nvFn5tfbDXbb2jc9l6oN361T1NBvDYFRl48LIY
PFwjAY/ViMHh2wLwTAEjIiJAYmIiiIqKUiAIkkZuBztKfjf43weAIMj2lJSUrxgM
xsYwKDo6+pZx8NaVpyhmLNgVmQf2x+cDv0j21zvoRTd2MM5ex2MuruxKrLXvYbUt
+ud327zP9dp8zg/YAi4N2bAakQ27ItlUK7VhdTIbdlVmw67KoXqFDbumJKmgRpUN
a1TbsCZSs8aGtYzasBatDWv10NmwtjGIo4faJ6AOD4MN407asM4pqHvKhnUbbVi3
iTRtw3iknhkb1mO2YXxSn9mG9c3ZsL45G9o3Z0MFczZUMG9D+63QwAIkXLChQpsN
FS7a0EHSkN2GDi9BIscWyzZU5LTtlK/a9mm+sj089YPt2em/2Z7V/Wh7Tvq17YH+
NdsjvUvfPNw2DR6rU4L7ryjAg1eV4JFaGThS3gQyMzNvORbueQvIysoCx44dkyII
kkJuBnmL3A7m998CmI2Ojt4YBkVHR4PExMSfzAI8Dx27o4vAHmYu8Kezv99GL/xy
G/3sOhZ9cZVIuOLYk9Gy5J/XZfeq5Nu9zvfb/auH7OhlkR2tEdvRKxKoVmpHa2V2
tE5mR6/KSQo7Wq+0o9eUdvSaCmpQ2dGGETvaqLajTWo72qyxo82jUKuWpLOjbWMk
PdQ+TpogGewod9KOdpK6Ju1ol9GOdpnsaDeJN02asaM9M3aUb4Z6zXa012JHey12
/16L3V8wZ/cXzNv9BVZogCRcsPsLbZsGF+3+Q3a7/9ASNLxk9x922P1FDjsmcdl3
q27YD459Y39i+kf7YSewf3oD2COv/8NOX/zW/obhC/vzUud3z/DnwP+2jIH7G0bB
rxq14KH6EfBOSR1IS0sDKSkpt9wCwsPDQUpKCvj000+HEARJIvcCvEFuB/uPAWxL
TU2VxsTE/NtpYE5Ozi0fjLozrhjsjmYDNIr9521RBV9to5ffQKMvuGnxV5x705uW
/XM7HV4VPQ6vKoHDv3rQgV4WOdAasQOtkUBXpA60VupA66QOtE4OXZU70HoFSQU1
qBxow4gDbVRDTRoH2qxxoM2jDrRFS9I50FZSmx7ijEPtEySDA+0wOFDuJNQ16UC7
jFuYHGj3NMSbcaA9Mw60xwz1mh1or8WB9loc/r0Wh3/fnMO/b97hLyD1W6GBBYf/
gA0S2hz+g4sO/0G7w39oCRp2OHZKXY47VOuOg9qvHY9N/eB4Zv5fjreuA0fkD8CR
/mfgKPnib44S1zeOpKUvHcEm51/fUy2D5/km8GC7ATzSYQSPcgwg4sx5kJWVBZKT
k0FcXNzGa2B4eDhISkoCx48f55FbwoPILeEPkQFs/7cBpKWltTGZzFsC2DoMuj2A
e5JKQGBUFkAjs3/YFpl3cxuj7Ev/6AtrO+NrXHvTGlfQnA6nVxnP6VXZ5/S/KHSi
l4ad6CWRE70shmokTvSKFKqVQXVyJ3pVQVJC15RO9JrKiTaMQI1qJ9qkgZpHSVon
2qJzoi06Z0DLGNSmv824M4Az4QxoN0BcgzOAO+kM4E5BnUZnQJfJGdBlcqLd006U
N+NEeWaIb3aifIsT5Vuc/nyL07/X4vTvnXP6981D/dYtFpz+/Tan/4DN6S9cdPoP
Ljox0bIzULrqvFN1w3m/7hvnk8YfnM/PA+dbq8D52bfAGf9P4Mz7ETjLvwHOhvX/
c55z3nRmLd24Ebn4BUiyfw9eldnB4wILeKx3FjzVMQmyc/NATk7OT377T548CRIT
E8Hhw4fryd1Ank/FPvhfA8jMzCz3rAhunQampqZu/A1eWVlZG5tDH04pBbSITECJ
zPzrtsjcb7bTS7/awbhwA4+75N6bem0Vy2l37Sjpcnmd7XV5V/W70OohF3pJ5EIv
izfVSFzoFYkLrZVtqpO70KtyF3pVCdUrXWi9yoVeG3GhDSMutFFN0rjQJo0Lb9Ks
UZvUXxJN6m8Cm9Tf727W/Hl3k/qHO1pG/7qnWfPjnhbN36DRv+1p0/7tjjbdX+9o
0/1lV7vu/wLb9d8T7RPfUjsmvsK4k+top3E1oNPoCugyuQK6p10obwbiz7hQvsWF
8i0uf77F5d9rcfn3zrn8++YhgRXqt7r8+xdc/v02Fzpod9HETtde+XXXPeovXY+M
f+d6evpH18s24HrHDVxB3wJX7D+A6xQArrIfgevCd8DV9OVfXXXub11FzptrqStf
/Z2x/B2IW/4rOKRxgydFi+CJQRs4Vi8AbDYbpKWlgdjY2FuWgU+cOAHS09PBwYMH
z5BLwcfIDaEP/NuPRXsCyMjISI6Li7slAM80cGsAnmHQb9JKAH4yA+yMyv7b9shT
326nl3y9g1H1BYVZvbY3pf46ntXm9jrT6faq4Lu9zwnc6MVBN1o97EYviUhiN3pZ
7EZrxG70ipQkc6O1cjdaJ3ejdQroqsKNXlW60XqVG69XfkG7pvx2V4Pyhz3XFH/f
16AA+xqV4M5GFbizaQTsbx4B+1s0YH+LBtzVpiXpwF1tOrC/TQf2c3RgP2cM3MnR
gTvbdWBf+xjYx4H2csbA3nY9uKN9/O+7OiZ+oHEnv8O7TF+iXdPXUd60G+WZ3Shv
1u3Hm3X78WfdfnyL248/5/bvnXP79827/fvm3eiAzU0ML7v3SFzuu5U33A9pv3Y/
Nfl/7hdm/+l+wwHcH68D98k/AXcCAO5TALjL/wXcF/8C3Je+Be7GL//qrr3+nbvA
9fWXaatf/z1k8SZguv4OQhz/As/o1sFvFS7w7MAcKCw/C/Ly8jbe/z3LwCdPnvQE
8D2CIMnkOsDHW/YD/scAfpmQkHB864qg51UwJSVlIwDP8CE+Ph48n3YaUELTADUq
+x87wtnfbacXf7Odfu6rAGb1jT1JV9eprLY1ryLumldZz5p3Zd8aekG4hl4cXkOr
PURr6CXxGnpZvIbWSEjSNfSKbA2tla2htfI1yhX5OrVO+u2uOtlf9tTJ/rmvXgb2
XVOA/Y0qcFezGhxoHQUHOVpwD2cM3NuhB/dyx8G9nRPgvk4DuK9rEtzXNQnu7Z4C
93ZNgnu7psA93dDBrklwd7cBHOiaBHd1GsD+TgO4kzsB9nEnwL6OcbCXtKdjAuzp
mPjXrk7DX6ldpu8o3TNf+HWb1/x6Ztf8eixrfnzLGta3sEYIl9b2ilfWDsqvrz2s
+WrtqfHv156b/nHttQWw9sEqWAv5GqxF/xWspQKwVgjA2tl/gbWLP4K1S38GazXf
/HOt7su/rJ1d+24tc+Xmt/Hub8CH8zfBsYUfQJATgFfNP4Bnxr4ETytcIKehAxQW
FoKCgoKND3t6znOcOHEChIeHAzqdPkne/yMRBHkfQZAXyP2APv8xgJiYmBc9K4Lh
4eEgKioKxMTEgOTk5FsC8MwC3kzPB2hwCqBFZv1zR3jO99ujTn+3nVH5tX/0xS/v
SKz9gpbRcsO7sOOGV2n3undF37r/uYF19MLQOnphGLo4vI5Wi9bRS6J19LJkU430
BrVG8u2uK5If91wRg711EnBnveL/dffd0VFX6fsjGmkhgApIjYCiyK6rq6yyWFbF
XYQFQSkiBFKpKaRX0tuk955Jm7TJpJA2yaT3XqlJqCIQEkJ6YyZ5fn/k3uskgusW
3f19Oec94aRMMp/nefv73gvFqFKs41dgfVwV1sdXT0lCDZFarE+smxJB/ZQkNRBp
/FGSm7A+uXlKUpuxPrUF61KmZG1yC15JboaisAlrhE1YndSIlUmNWCFowIqkBqwQ
NGK5oBHLhM2SZWmXBpdldjxcnXOr67XCuw9+V9794L2avgcft4x1ftmOzn230Xms
C50nB9FpMIFOK6DTBej0nUBnwDg6A4fR6duHzsCex51eXcOdVvf6H2n/8Gjs2I1e
7LzwCF9eHMKBG8CXHVJ80jKArZVdsEwWw9PTEw4ODizwoySg5v/kyZP45JNP+MT/
0xrAVjIPOPepF0ZwOJxn1dXVX6UdQWoF6Ko4JYClpSU7PPqw8TkoHDXCkhMWeF7d
YlDuhGO/3EmP3vln/B6+rBvSvcQ4umuubULXbNfkrtkeaV3y3pldCr6iLgW/nCnx
z+1S8Bd3KQSIuxQC87oWBuY9XBIoHl4eJJ5YEZKH1WGFeCWiBOtiyrEupgLr+JVT
EluJdXFVWBdXjXXxNT9KQi2RuikRNMyQxinNFzZNSUoT1iY3Y21yC9amtGBtSivW
prZibUorXklphWJKK9aktGB1cjNeSW3FurRLeD3jKt7M7sDb4pt4v+gOPqroHv+s
Ybhv59WJrv23JruOdU52nRyY7NJ/jK5zQJcz0OUFdPlJ0RUwhi6/IXR59012efeM
dzl3D3eZdw70nv6hd0ypow87WnvxQd0jfNwyjK+vT2J7xwT+0jqMz2sewj2rCAEB
AXBycoKjoyO0tbVx9uxZNgpGCXDq1KlHHA7HjJj/I2Qn8D0yDjbnZwmwYcOGubQh
NLMWYGpqyghAz6U/flYPCzWs8KKGGeaoWwzLHXcYkDvl3jf3tO+jF3SDe5YaRz+c
ax3fPZsr7J7tntYt75XZreAr6lbwzZkSv9xuBf/c7oUBuT1LAnJHlwfkTK4MzsOa
8EKsjSzF2siyKYkuw9rocqyNqZgSfiXWxlZNSVz1jxJfQ6QWr8TX4pWEOijG10Ex
QUYS66EoaIBiYgMUkxqgmNQIxaQmKAqboChshmJyCxSTW7A29SI2ZFzBm1nteCvn
Ot7Nv4U/F93FJ2Wd2FbVg7839mPfhREcaR+Bxu1haHaNSA2GxocsJiYeOkxMPHSf
mHjoK53s9huf7PYdmez2GkC3R99Et0vPeLdl93C3Xmf/gPrN/sf7rvThi+Y+bK7p
xRvlvfiodQzbO4C/tU/i45ZhfFt7H9FZYoSEhLArcLW1taGnpwcDAwNWBaQZwK5d
u7JJCfgE6QJ+SqqAK+gN408jwCwOhyOnp6d379SpU0+sBcgSgKaCL2g5Y7GqCeaq
mY7KadgNyZ1wG5hz2qdvsU5g71LDyEfzLGN7Zjsl9cx2TemR90jvUfDO7lHwEfUo
+Ih6FvqIHr3kKxp92T97ckWgGKtDCqAYXgRFXjGR0imJLIViZBkUo8qnJLoCijEV
UIypxJqYSqyJqcDq6EqsjiHCr56S2JopiavFqtgarIqtxar4WqyKr5uShDqsSqjH
qoQGrBE0Yl1yKzakXcSbGVfxtug63s+/jY+K72FbZTd2NQxg/8VRKLVLoHFLAq37
j6H/cBxmg2OwGR0Fd3QUniMj8B0ZnfAbGR/xHZ7o9RyceOTaP9nD7X3cY90z2mPY
PdR3/Gb/6Hdt/RNftvRja20ffl/Rh7WlvVhbMYCtF6XY1gZ8dmUCnzePwK7uBlLS
0hAYGAgXFxdwuVxoa2uzwztoGfjkyZNQU1ODmppaN2kA0fOBd5JLJNeTYRC5p94a
Rgmgr69f+yQC0FqAlZUVLCws2FzAcn13KBwzxDxV03E5DZthueMug8+f9O5fqOXf
t1Q/vHeeOb93tmPio9nc5Efy7mmPFLyyHil4Zz9a7J01vNQna/JlPxFWBYmxOrTw
RwkrwurwIqwOL5kSXglW80qxOqIMqyNKsSqiFKsiy6YkqhyromUJUCVDgFpGgCkS
EODj67EmsRHrhc3YkHIRb6ZfwVtZ7diccwNbC77HZ6X3sL3qIfY0DuDQxXGodEhw
+o4Eul0SmPZLYTMqhZNEAg+JBH6PHyNgfBz+I+PwHRiDZ+8ouA9H4dQ1PGHVNTxi
0Dncf/zmwMh3bYOSv7cM4OPafrxd2Y8NZX1YWdyHVaX9+EPjOD69DHx6Gfis9TEs
WruQWTZ1d6PsRday8xlWVlPDILJ1m82bN8cT7Tcgc4B/ISXg5eTauOf+EQGe09fX
Tz59+jTU1NSeOBhiZWXFRpF1dHSw3tQbC5T0MU/F+LGcutWInIbzkNwJr0EFTf+B
pfph/QtMY/pm2yf0zXYW9s12Te1b6Jk58JJXpmSZdyZW+OVgVVDelAQXTElIAVaF
FhIpxqrQYqwMK8LKsGKsDCvByvASrORRApRjVVTFFAmiKrAyqnJKoqumJKZ6Svg1
WB1bh7XxDXgtqQVvplzEW+evYLPoGraKb+HT4nvYXtmFPbV9ONg8AuWrUpy8KcXZ
u1IYPZTi3IAE9mMScCUSeEsk8JdIECiRIGhMAv8RCbwGJeD2PYZjzxjOdQ9B/04/
TnT04dClfuxsGsDHtQN4p2IAG0r6saqoHy8V9mFZyQB+Vz+Ojy5M4uMLwI7Wx+Be
6kZhXROys7MRGRkJS0tLuLq6Mn9vamrK7nKytbUFdddqamrYt29fGdF+feL/95Ax
sPVkEnie7JXyTyWAqamph6amJiPAzLkAej0JXUb4g4UX5L/TxfxjhlI51XOjchpO
I8+e8BySP+M3uFQ3ZEDBOHpgtl18/2xHQf88bvLIEo/0yWXeWVjpl4OV/rlYGSDG
ykAxVgbl/yjBBVgZUoAVwYVTElKIFaEyBAgvxUpeKVbyyrAiovxHiazAisgKrIqq
wpqYGqyLa8BriU14U3gBb6VewnsZbdiacwN/KbiDv5Xex1fVPTjYOISjFx/jeIcU
Ot9LYdgphUWvFHbDUnAlUnhKpfCTShEolSJIIkXAmAQ+wxK4D0rg3C+Bfe84LDpH
off9MDTaB3GwdQBfNg5ia9Ug3i4bwGtFA1hZMIAX8/uhkNePlWXD+EO9BFtbgQ+b
AY1LY4i+ch/V9Q3IyckBn8+Hu7s7E2ryz507BycnJ7i5ucHJyQl0nV9NTQ3ffvvt
ZTL8YUKKP7Lr4CsJ+D9/cyj54rM6Ojo6WlpaUFNTY11BemoYLQfL3k/zyTk3zD94
FguOGkzIKVuMyqk7jMzScB+ef9pnaMnZoMFFRlGDs23iBuY7Jo4v5AqxxDMdK3xz
psQvFyv8c7EiIBcrAvKmJDAfywPzsDwoD8uDCn4kQEgRVoQWY0VYMVaElWB5eAmW
h5diOa8MayIr8Up0NV6NrcXr8Q3YlNSCt1Mu4k8ZV/Fh9jV8ln8bXxbfw1eV3ThQ
349jF0ZxvE0KrVtSGNyTwuyhFDYDUjiNSuEqlcJbKoU/AT3gsRS+Y1J4DkvBHZLC
YUAKq+7HMPphFGeuDePYpUHsbRzEtpohvF8+iN8VD2J9wQBW5A/gBXE/5HP78WLB
ANZXjOG9hglsaQS+vjABj/YBlF+9gZqaGmRnZyMmJgaWlpbw8PCAh4cHtLW1oaur
CzMzMzg4OMDV1RWenp7gcrmgJ7sT8DtmzZplRfw+3QTeQ6aA15K7g5+feYH0Uwlw
8uTJXdra2owAsqkgJQD1PwYGBth/zhHzDuhA/ojepNwxszE5NbtRjobryLyTXsMv
aQcOLTaMGJK34ksXOCZgkWsKlnpmYrmPaEp8c6bELwfL/cV42S8XL/uL8XJA3hQJ
AgumJLgAy4MLsTKkGKvDS/FKRAXWR1VjA78WG+Pr8ZagGe8mX8SW9Cv4JPsavsi7
hZ3F9/B1ZTcO1fVDuWUEJ65IoX1dCoMfpDB/IIFNrwSOQxK4jEngJZHAVyKBn0QC
v8cS+I1J4DkiAXdICrt+Kay6JTC9Ow6dG6PQuDqCg42D2FE7hI8rhvBO8SBezx/E
mrxBLMsdxKKcAczPHYCCeACrSkbwuyoJ/lQ/gZ3NUji0jyDv2n1cuHABJSUlSE1N
RVhYGAOdAk/Nvb29PTw9PREQEICAgAB2iSfN+w8cOHD5mWeesSSm/yyZ/qGFn01k
DFxe1vT/IwLMUlJS2qSjozONADQVpO1gepuYoaEhNPSNMF/VEvLfnYWckvG4nKrt
GEedOzr3pNfoS1r+I0sNeBMKljFY5CTAIpdULHHPwMte2VPiLcLLPiIs8xFhmW8O
lvnm4GU/MbMEq4KL8EpoKdbzyrEhsgqb+LX4Q3wD3hW04IOUi/g4vQ3bRNfxZd5t
7Cm5jwOV3VCq74dayyhOX5FC94YUxneksOiUwqZHCqcBCVxHJPB8LIEPAdxfIoHP
uASeoxJwhyWw65XAsksCkzvjOHt9DMcvj+Bw0zC+qhnC5+XDeL94CJvyh7A2dwAv
i/rwoqgf87L6MC+7F/KiXiwvGMTr5WP4Y81j7Gp8DKeOERTc6kZbWxuqq6shEonY
Rc8zgdfT02Ma7+3tjdDQUERERCAkJARubm6gAzsaGhrYs2dPFTH7VPNVyOzfX0ja
t3raDOAvJQCHw5mtq6sr1dDQ+ElXkLaFZwaCi856YP5BLTx/2Egip2I9zlHjjs85
4Tm2VMt3Ypl+OBZbxmKhQwIWOidjqdt5rPHNxRpfMdb4iqHoJ4ZiQB7WBRVifUgJ
Xg8tw5sRFfh9dDXe5tdhc0ITtghb8UnaZWzLbMeXOTewp/AODpR2Qqn6EdQaB3Cy
dQzaVydgeGMCZneksO6Uwr5HCm6/FG5DU+D6PJ7Scl+JBN7jEniMSOA8IIHtQwks
7ktg/P1j6LSPQePCCA43DOOryiF8UTaMLUXD+L14AK/l9GFVdi+WZT2CQuYjzM18
hLmZPZif9QjL8gbwaskw3q4YxaHmcfjeGEXl9w/R0dGB+vp65OXlISkpCSEhIT8B
ncZXlpaWcHZ2hr+/P3g8HmJiYhAVFYWgoCA4OjrKBnzSrVu3phHwzQj46kTzPyOj
XyvIBDDL+3+C9xM/OUUCubNnz7YdP378J5mAbCpI4wBdXV2sMg/AvH1nMPs7Q6nc
0XOPOaqOj+cdd59coumL5QZhWHguDgoOAixzz8BboaV4K7wMfwgvx9u8CvwxshKb
Y2rwfmw9/hzfiE+SWvFZyiVsz2zD37Ov4+u87/Ft8T0creyGWm0vTjUP4ewlCQzb
J2F2cxJWdydg92ACTg8n4No3AfdBKbxHpPAdlcJ3XAqfMSk8R6VwG5DAqUcC6wcS
mP0ggeGNx9C6Og71llF8VzeCryqG8XnRMLbkD+KtnD68mtWL1Zk9WJrxEIvTH2JB
ejcW0I+ZD/Fybh/WFw7gT+VD0Lk0htjbw7j0wwN0dHSgoaEBBQUFEAqFPzHxOjo6
zL+bmprCzs4OHh4eCAkJQXR0NOLj48Hn8xEWFsZucqUm/9tvv72xbt26AAK8Pln9
ViZDn5+Ryd+1MuPf7Lbwf4YAz+np6aXT4oJsIEiZamVlBSsrK1YRfNsmCHP3nsLs
g3oTckfOSZ5RdZycp+GOl7QDsNQwAgvOxWMpNxVbY2rwaXwjPhc046/CVmxPvYi/
p1/F3ux2fJNzEwfzb+NI0V2oVHTheG0vzjQO4mzrGIyuTMD82iSsbk3C/u4knB9M
wrVnEu69k/AamIDP0AR8hifgPTwBr2Ep3PulcO6RwvaBBBY/SGB0UwLdNglOtY5D
uWEMBytHsat0BJ/lD+CD3D78PrsHr2Z0Y9X5LixJe4BFqZ2QT3kA+dQHkE/twoLU
TizJ6Iai6BHhD231AAAgAElEQVQ25fdib+0Q3K6NofjeIH6434m2tjbU1dUhPz8f
QqEQ4eHh00CX9e3GxsawtrYGl8uFv78/IiMjER8fj8TERCQkJIDH48HDwwPnzp0D
Xdc/duxY/8cff5xO5vxNyajXGWL295Jq3zszg74nYfyzBKDpoLm5uYssAWggSJtC
VlZWsLa2Zpupu209MXfPacw9qD85/7DFxGxVLuaf9MQLmv54yYCHRVZJ2OAjxjZB
C746fxUHc27gWOEPUCm5j+MV3ThT8wjaDYPQaxmB8SUJzNomYXkDsLs9Cae7k+B2
TsL94SQ8eibh1T8Jn/5JePdPge/ROwHuwwnYd0px7nspjG5IodcmhdZFKTSaJFCq
Gcc35WPYUTCIT3J6sTn7ITald2NdaidWJN/DkuT7WCS8B/nku5BPvgd54T3IC+9i
YfJ9LE9/gPWih/i05BHMLw0h7YdR3HzYhzt37uDy5cuorq5Gbm4uBAIBQkNDYWVl
9RPQZdvpTk5O8PHxQXh4OGJjY5GUlAShUIj4+HiEhobCzc0N5ubmDHhlZeWhv/3t
b+JZs2adIymeEdH642TdaweHw/kzCfgUCfjzZ0b8/ywBntHV1VU+deoUay/SQFBX
V5cRwMbGBtbW1lP5qIERFmk4Ye4+fcw9bIm5qlwsOukNhTMBWGwYjeUOmXiXV4Wd
qVfwbe4tqJd1QbOmD2cbBmF8cQwWVydg1TEJmxuTcLg9Cee7k3C5D7g/mIR71xT4
7t2TcH0wCafOKStgdXsSJtcmoHdlAmeapTheJ8HRKgkOlI5iV8EAPs/pwZbMbryd
1onXU+5BUfgDlgt+wAuCO1iY+APmJ975UQR3IJ90By8l38Xq8/fxXu4D6DYNIO77
UVx5OITu7m7cuHEDLS0tKCsrQ0ZGBuLi4hAYGPhETZctnDk6OsLb2xthYWEM9OTk
ZAiFQvD5fAQEBMDR0RFGRkaspn/48OFHf/nLX/KfeeYZe6L1ZqS6Rzt835I8/z3S
5l1CZv7lfgn4/5AAZ86c+ePp06ehqqo6rSCko6PDuoG2traws7Njy4l/sgjCgn36
UFCywVwVZyic8MJ8zQAsNI7DK9w8bA6pxnbBJRzIvgn10gfQqhmAftMIjFvHca5t
Elbtk7C+Ngmb65OwvTkJmxuA1fVJWLRPwuTqJAwuTUK7eRKn6yehXiOBUtkI9hf2
Y7f4EbZldWHr+U78MfkuNibdwdrE21iZcAsvxd3C4rhbUIi7hXmxNzEv7haT+XE3
sVhwG8uTf8AfMu9Bq74XMTeHcbFnFH19U1p+5coV1NbWIj8/HykpKYiMjISvr+/P
mncrKyum6RR0oVCI1NRUpKSkICEhgcUFlpaWOHv2LGu+HTlyBDt27BiWk5ML43A4
XA6HY0X6+ifJbN8+0t37iCx6rJPZ+J3zS8H/hwR49dVXn9XU1JSoqKhMiwO0tbVh
ZGQEKysr2NnZwdHREXZ2dnBxcYGJswdWajhB4TtLzFZ2hPxJb8zVDYe8aQJWOuTg
dc9SfBDWiL8lXsU36bdxWNwJlcKHUC/txYmKAZysGsbJqhEcrxqBRuUI1MqGoVwy
hCOFAziQ9wh7RA+xPeM+Pk27iy3C7/FO4k1sir+J9XHXsSLmGpbGXMOi6GtQiLmG
uTEdRK5PCf8a5sVcw6LYG1iWeBObM+5Ar64HCbeGcK1/HAMDA7h//z46OjrQ1NSE
4uJipuXBwcHw9PScJlTL6cS0jY0NuFwu/Pz8wOPxEBcXB6FQiLS0NKSlpUEgECAy
MhI+Pj6ws7ODgYHBtA6eiooK9u7di+3bt2Pbtm149913b3I4HHdCAHr379/Ijv/v
SXl3BSnxzqea/0uA/0UEIFagTkVF5SduQF9fH9bW1rC3t4erqyv8/f2ZKTzmL8Ci
QxZ4/pgj5p3wwZyz4ZhjKsBCq3Ss4ubjNc9SvB1Uhy28VnzKv4ov4juwPfE6tgtv
YnvyLfwt6Ra2Jd3Cp0k38VHiDbwfdw1/5F/Dppg2vBbVBsXIK1gReQVLIq7gxYgr
WMS7igURVzA34irmRrRNSeSUzItsw6KYDqyI68DnotuwbeqB6IdhdI1IMDQ0hAcP
HuD69etoaWlBRUUFRCIRBAIBwsPDfwK4LOj05DR7e3u4u7sjICAAkZGRSEhIQEpK
Cs6fP4+0tDQkJSUhKioKfn5+cHBwgLGxMTQ1NdmshYaGBlRUVHDkyBF89913UFVV
xb59+7B3717s2rULmzZtyiF+X4Vc9/InMte3mnT2FEik//w/o/m/mAA6Ojr+qqqq
zA3QCaGzZ88y8+/p6YmwsDDw+Xzw+XwEh4TiC248nj/mgDmn/DBHLxJzTBIhb3ke
8vY5WOyUj2WuJVjlVYG1vtVY51+LVwMa8GpQI9YFNUExsAmrg5qxIrgZLwe3YElQ
C14IasXC4BYsCG7FgpBWLAi9gAUhF7Eg9NKUhF/CnLCLkA+/jMURl/BmYhuUCr9H
ZFsvmh6OYUwinQZ4a2srKioqkJubC6FQiMjISFhZWT0RcFqckTXttEDD5/ORlJSE
tLQ0pKenT9P0p4FOD3E+c+YMW+TQ1taGs7MzXF1d4eTkhNOnT+Pw4cM4cODA+Asv
vGBHTP82MtVLu3oM9H8W+F9MAGVl5UPUPMm6AU1NTdjb28Pe3h5eXl7g8XgQCATI
yspCUVERKmob8JlrEuae8MYc3QhCgHTI22VD3lEMeedCyLsUQ96tDPLuFZD3rIS8
VzXkvWsg71MLeZ96yPvXQ96/AfL+jVMS2AT5wOYpCWqGQnAzXgxpwcaYi/g6+xo8
mrtQfn8Y/eNSSCQSZtKvXbvGNDwnJ4cB7ufn91TA6RS0hYUFHBwcnqrlGRkZSEtL
Y6mbt7c37OzsYGRk9BNNp5c50/yfksrU1BTW1tbw8PDA6Ogo3NzcYGVlxc772bdv
Xx2Z6vkLufh5KTH5z/074P8iAmzYsGGJqqrqY+oGZINBLS0tODg4wNnZGaGhoRAK
hRCLxbh27Rp6e3shmZiAZXY9FpvEYI5RLOTNUyBvnQF5exHkHfMhzy2CvEsp5F1L
Ie9WDnmPcsh7Vk2JVw3kfWog71MNeZ8aLPStxctBdXiX3wolUTv8mztR/2AYw48n
AACjo6N49OgR7ty5g7a2NjQ0NKC0tBTZ2dkQCATg8Xjw9fX9WcDpDWm2trZwcXGB
r68vs2zUl2dkZCA9PR3JycmIjY1FSEgI3N3dYWVlBX19fTaYqa6uDlnLSbWegm9k
ZAQTExNYW1vD0dERZmZmcHV1RVxcHDw9PeHi4gJHR0dYWlrC0NBw8s033zQktf3X
yCmfbLL335Gf/+IUCearqakJVFRUQIVaAbov4ODgAB8fHyQkJKCoqAi3b9+G7L8x
iRRRjTewK7oMr3vmYKlTNhbaZ0HBMRcKTnlQcC7AIm4hlnqWQNGvHG+F1eCvCc04
nnMV3vV3UH13AI9GJez1xsfH0d/fj/v37+P69eu4cOECqqurUVBQgPPnzyMuLo7l
408DXEdHhx2AaWNjA2dnZ2bWY2JiIBAImFmnWp6YmIjIyEj4+/vDyckJZmZm7Ewe
OounpKSEQ4cO4dChQzh69CiOHz8+7fY1Gxsb1s719vZGYGAgwsPDYW1tDVtbW/j5
+cHX15d93dnZGRYWFjh69Gg52ez58dbPqRLvM782Aebu3r37r7IEkLUCp0+fhqOj
I5ycnBAaGoqcnBy0traip6cH/4l/Y2Nj6Ovrw/3793Hjxg1cvHgRtbW1KC4uRlZW
FpKSkhgoTwvatLS0pmm4LOC09ErNOgX8/PnzLEcPDg6Gu7s7rK2tYWBgMG0DR0lJ
CQcOHMCuXbuwY8cOfPXVV9i3bx+OHDkCVVVVaGpqwsjIiFX9fH19n0iy1NRUuLm5
wdnZGV5eXggLC0NISAi8vLxgb28PIyOj8YULF1I3sIm4AflfzQXIkGA2h8NZ8N13
3zEroKqqyghA/RqXy4WrqyvCwsIgEonQ3NyM27dvo7+/H48fP34qwBMTExgfH8fQ
0BB6e3tx//593Lp1C21tbWhubmaanZmZycAODAx8ItiyI9K6urosUre1tQWXy4WP
jw9CQkIQFRX1Ez9OzXpcXBzCwsLYgzcxMWEHL2loaDDTrqKigj179mDbtm346KOP
8Pe//x379+/H4cOHoaqqykbozM3N4ejoCC8vL4SEhLCgMSMjA7m5ucjPz0dRURGK
i4tRXFwMsViMtLQ0xMfHg8fjwd/fH87OzjAzM8O2bduCSL3/AzLdu+hJLd7/NAHk
OBzOvA8//HCzsrKyVDYlpBaALiW4ubmxokh0dDQyMjJQXFyM2tpaNDc34+LFi7h0
6RIuXbqECxcuoLm5GQ0NDaiurkZJSQnEYjEyMjKY5oWFhT0xUJMFW0tLCzo6OtDX
12cDqw4ODnBzc4Ofnx/TtsTERAY4jdYp4OHh4fDx8WG+mAZfNIBTU1PD6dOncfTo
URw7dgzKyspQU1PD0aNHsWPHDmzbtg27d++GsrIyy5BoXcDV1ZUFj4mJicjIyEBe
Xh5KSkpQVVWFmpoa1NbWoqamBtXV1SgvL0dubi5SU1PB5/MRFBQEV1dXWFpa4tix
YxUyBz6/Rip//3Tu/88S4FmSbiw6ePCg1UwCaGpqMr+qqamJM2fOwMPDYxpY/v7+
CA0NBY/HQ0REBCIiIhAeHo7Q0FAEBgbC19cXXl5eTwSaiizYenp6LEK3tbWFs7Mz
PDw8EBgYCB6PBz6fD4FAgNTU1GmAC4VCxMbGIiwsDN7e3nB0nLppi16ESQFXV1dn
Pl3W6qmrq08L5vT09LB//37s2bMHhw8fZg0eGkBSjRcIBEhPT4dIJEJBQQHKyspQ
WVmJ6upqBnxOTg7Onz+PzMxM5OXlISMjA/Hx8dOCTG1t7R/IYU87yZDnCjrj/x9P
A58wHzCXw+EsOnTokJhGt7JnCRsYGEBfXx+6urrQ0tKCpqYmNDU14enpycD18vJi
QoGV/T/9OVkzTjWbgu3k5AQPDw9GKuq/aZROCzC03BoTE4OQkBC2SWNqasqWKJ4E
OI3a1dXV2edlrZ3sOLa5uTmOHj2Kw4cPQ1tbm7VzY2NjkZycjOzsbIjFYhQVFaGk
pISBXltbi7q6OtTV1aG6uhoCgQC5ubnTsousrCwIBAJWLraxsYGxsfEYaQLtIbd/
KpI4YPa/Ggv8UgI8Q6zA/JUrV246cuTIJfqgTp8+DX19fZibm7P2ML1dzNDQkJHi
7Nmz0NHRmSZnz55liw1GRkbsjmIbGxs4ODjAxcWFWZCwsDDWJ09KSkJKSgorsaak
pCApKQl8Pp/5TVdXV/rQ2C1asiZdNk2jmn3q1CkWMFIrY2pqCgsLCxalOzo6wsXF
hdX+z5w5A2VlZTg7OyMiIgLx8fE4f/48cnNzUVhYiNLSUpSXl6OyshI1NTWoq6tD
bW0tM/t0Mqi6uhoA0NDQwNrCtKXs7u4OW1tbmJub47nnnjMmix4fkAYQ7fnP+lUI
MMMVzOZwOMs2btz40eHDhy9RV6ClpQVTU1Pme6kL8PDwgJubG7hcLpydneHk5MSE
Bo0eHh7w8vKCn58fgoKCEBYWhsjISMTGxjLNTklJQWpqKlJTU5GcnAyBQIDY2FhE
RESw8rODgwPMzc2nnZQlG7Spq6vj6NGjOHLkCJSUlHDs2DGW0p46dYqZ9JnWxs3N
DT4+PggICEBISAjCw8MRGRkJW1tbGBoasgOaExISkJaWhpycHBQWFk4Dvba2FvX1
9WhoaGCaTwkgFAoRERGB3Nxc1NXVITs7m1UTU1JSEB4ezshsYWGB5557zoSsen9E
qoJL2KmfvzIBZhFfs4jD4axcvHjxuwcOHCiglkBTUxOmpqas7RkcHMweVlRUFKKj
oxETE8PKxXFxcUhISEBiYiLrhycnJyMlJQUpKSkQCoUQCASIj49HdHQ0wsLC4O/v
D3d3dzg4OLBTMbS0tKZpt6qqKpSVlaGsrAwlJaVpYFNNP3nyJKvI6evrswknquGy
oIeGhk4jZFJSEtNGa2traGlpITo6GllZWUzry8vLUVVVNc3U19fX/wT86upqZGRk
ICgoCElJSSgsLIRIJGKWLS0tDaGhoXB1dYW1tTVMTU3HySzAkRljXwtllz1+LQJM
iwWI/3l7586dEbQ2cOLECXpJEUt9goKCEB4ejqioKAZ8fHw84uPjERcXh9jYWPD5
fERGRiI8PBzBwcHw8/ODu7s7HB0d2QEIVLPpAUgU7CNHjuDYsWPYv38/vvnmG+zf
vx/ffvst+7zsOJumpiZ0dXVhYGAAY2Pjn7gbLy8v+Pv7IyQkhIFOg8mMjAx4eXnB
0dERzs7O4HK5MDAwQExMDPLz81FcXIzS0lJUVVWhurqagd3Q0ID6+npGAAp+VVUV
KioqUF5eDj6fj+joaCQlJQEAUlJSIBaLkZKSwnYBraysoKOjc58QQIns+v/mBHiG
pB1zSSdqLYfDeU9ZWbmbRsy0X0DNKq2AWVpawsbGBnZ2dkxsbGzYXIGRkRH09PSY
X6U3mNMgjJ5WRgOvbdu2YefOndi9ezd27dqFvXv34sCBAzh8+DDT9tOnT7OKn6mp
KWtf06zB29ubaTmPx0N0dDRiY2OZ/+Xz+fDx8WHuy9XVFd7e3uzvPn/+PEpKSlBW
Vsa0XhZ8Wa2vq6tjWk/BLysrQ2lpKYqLi5GZmYnU1FRkZmaiqKiITRj5+/vDwcEB
lpaWUFJSqiFHvtHG0B/IwsevT4CZewOEBC9wOJy1KioqKcePH2d5spaWFtTV1emi
IhMKJpWZX6cm+syZM2zj1cjIiF1YJbuPcObMGUaCr7/+Gvv378f+/fvx3XffQUVF
ZdplV7RP7+XlhYCAAISHh7PaAA0oo6OjERwcDC8vL7i5ucHFxQWurq7w8vKCr68v
6+FbWloiJiaGBXcUdJrSUeCpv5cN+KqqqlBZWYmKigqUlpYy8AsLC1FQUIC8vDxW
FMrOzgafz4en59QpIJaWltiyZUsUsQCHSS3gd6QvoPBzg5+/BgGoJZjP4XCW7t69
+yC9sZqaWVNTU5iZmcHExAQmJiYwNjZmqSKN/Gn0Ty+joFaC7r05OjqCy+WywNLb
2xv+/v4ICAhAUFAQAgICoK+vjwMHDkBZWRmnT59m9QKaRhoYGMDExIRlKbKvTU05
fX3q94ODgxEQEMAevqmpKby8vJCSksIAp9pcU1PDAj0qT/L1M8EvKSlBcXExCgoK
kJ+fD7FYjMLCQpSUlCAvL48FgFwuF1ZWVjA0NOyfNWuWBRkEPUTu/nlTpiT82xBg
5hYx6Uot1dfXb6VR8blz55ippQcZcLlcODo6wt7enoFMu4ihoaFwcXFh2YGbmxs8
PT3h6+vLou+IiIhpWpuens4CL5FIhKCgILYtY2xsDHt7e9Zfd3d3h5eXF3x8fODv
74+goCAEBwcjJCQEwcHBbDmDBpc2Njbw9fUFn8+HWCxGY2MjGhoa2Efq16mWl5eX
IyMjA3w+H/7+/uByubC0tGQ3ecv2IywsLBASEsK0XhZ8WXcQFxcHX19fZnV27tyZ
RQZD9MhI2Pu/aRr4M0HhcxwOZ4GamtohqvHU5Hp7ezPzSbXLz8+P1eTj4+NRUFCA
lJQUNnYlm2rFxMQgPj6eNU0yMjKQk5ODgoICVlipra1FY2MjWlpa0NraiurqaqSl
pbF6PpfLZXMLNjY2rHHl4eGBgIAA8Hg8xMfHIyMjA6WlpWhqasKFCxfQ2trKpKWl
Bc3NzWhqakJtbS0yMzPB4/Hg4ODA+v60w0hP69DV1WX1D1oD8fDwgEAggIuLCzP5
tFBEwReJREhKSkJwcDAL/nR1dR88++yzVjLTwHtIV3ANPfTxVysE/UIyPM/hcOSN
jY3zLS0tYWtry8bEwsLCwOPxEB4ejrCwMLbpEhERgcTERADA0NAQG6mmAVhqairS
09ORnZ3NfGNZWRkLslpaWnD58mW0t7fj+vXruHHjBm7fvo3bt2/j1q1b7OPNmzdx
48YNJtevX8f169fR0dGBjo4OtLe3o6OjA21tbWhra8PVq1dx9epVXLlyBZcvX0Zr
ayvEYjF4PB7s7OxYOZoWi/T19Vkl1NDQkNUGjIyMEBoaioqKCty9exe3b99GVVUV
oqOjIRKJIBaLp2UPxcXFyMnJYabf3d2d5v6SjRs3+j9h43cj8f+zf9VS8C8kwHMc
DmfOn//853dNTU0f0TFoPz8/REREsIIOLepkZmYiKCgI8fHxEIlEaGxsZMWP/Px8
5gtplCwSiSASiVBeXo6WlhZcuHABly9fRltbGzo6OnD9+nXcvHmTgU6Bf5JQAly7
dm0aCWTBb21tRXp6Ory8vKCvrw8dHR1WlqZAGxkZwdjYGMbGxizOiYyMRHV1Nbq6
uvDw4UO2N1BYWIiIiAgIhULk5uYiLy+PAV9aWoqioiLk5OQgOTkZERERsoHf5LZt
21LJEog+h8PRIFXAD2WWP/6l6P8/TYBnSTyw5Ntvv1U2NzeXWltbw83NDWFhYUhK
SmKNkMLCQhQVFcHb2xtRUVEQi8UoLi5mdfDm5mZmzquqqpiboAQpLCycBjzV7KcB
PlPzKfiUAO3t7Whvb8fVq1eRk5MDb29vZrppsGpoaDgNaFoejo6ORlVVFe7du4f7
9+/j7t27uH79Oi5evIjy8nLmigQCAUQiEWv9lpaWoqysDCUlJSgoKPhJ3Z/4/cnd
u3fnkI1fPXLlC90DeJvk/wq/ejv4n6wSLuRwOCtVVFSszc3NJ21sbODh4YHw8HAI
hUJWJi0pKUF6ejoz+bT6V1RUxMBvbW1l/r+9vR2jo6MQCoWIiopCW1sbA669vR1X
rlxBSUkJCgsL0dTU9FSQZYVqfEtLC/h8PjvoQl9fn2k4BdvMzAx2dnbg8/koKytD
R0cHe+22tjZcuHABtbW1KCoqQmpqKng8HqKiopCamoq8vDz2ninwVOtzc3PZBFNw
cDAr+Zqbm09s3749nYBvQq58kz3r51WSgs/9VSeC/sUq4UIOh6OopqbmamFh8RMS
iEQiFBcXo6ysDIWFhSy4q6ioYMBfuHABFy5cYATJzMxES0sL0tPTIRAI0NzcjCtX
ruDq1atobGxkroOOYefl5TGfLuvbr1y5Ms23R0dHs9RUVstNTU3h5OQEPp+PoqIi
NDc3syCwoaEBtbW1qKioQEFBAdsb8Pf3n2bmaQeQ1gtkgadzD3R62NfXF05OTrTq
OfTee+/xZLaAtMhJ33vI+tdr7OZvcuL3f50AMwpEcsQ3rT106JCDmZmZ1MrKClwu
F4GBgYiNjUV6ejobiqBVNNo8qa2tRVNTE1paWlhjKCcnh42ACQQCXLx4kUlSUhIS
ExNx+fJlSCQSJCcnIzo6Gq2trWz45NKlS9N+prS0FJaWlqwOYWJiAicnJ/B4PGRl
ZaGwsBDFxcUsVy8sLEReXh6ysrKQnJzMxsQCAwPB5/ORlpbGMpOysrJp74kGeAUF
BcjJyUFGRgbbFQgICICbmxtsbW1x7tw5aGhoXHnppZe4BHxjAr4amQL6lOT9L8pM
BM/6nyHADBIsIAWKjdu3b9cyMTHpPXfuHDvwQHaEnD44ah7LyspQUVGByspKiMXi
aW6CPmiqkS0tLeDxeEhISIBYLMalS5fYA66srGQpHBWqxaSxAicnJwQFBSEqKoo1
p6jExcUhJiYGPB6PjaDRbmVaWhry8/MZ0BUVFdNE1r+LxWLW4UtISEBkZCQCAgLg
7u4uu1L3aOvWrfEywOuQ8/0OEbP/Ian6rZLp/8/6d83/f5wAMiR4nvyhyzkczoYN
Gzbs0tbWbqR9dbo+FRkZiaSkJDYFQwMkWSkoKGCTPSUlJawQ09jYiMbGRjZlJBKJ
UFJSgszMTAiFQtaImSn19fUIDg6GtbU1Gx+jLWraI5CtD6SlpUEsFrMpHlrRo0Ib
OrKaTkE/f/48m1MIDQ2Fr68vuFwuA97Q0HBgx44d2XJycjZk+dOY7ACqk8OdvyCL
nxtkSr5y/2rr9zchwIzZgYXkD9/E4XA+/vrrr72NjY0HaOvVzc2N+c6EhAScP38e
OTk50wYlS0pKmIWgVoJqXWVlJfLy8hAcHIzExEQkJycjKysL2dnZrD7/JKmqqkJV
VRXKy8vZMGZZWRn7/NOEAi7bxKEFHZFIhIyMDKSkpCAxMRExMTEIDQ2Fv78/3Nzc
4ODgwIZldHR0Ov/617+mysnJ0aNd9GTWvY+RXf/PyR1/62XAn/Of0vxfmwA0KHye
+KuVxIR9uGzZsoPKysrZpqamEloydnFxYQOcdAmDztCJxWIUFBRMI4SshaDBJB0Y
yc/Pn2aOqaZSAGktX/aj7P9navaTwM7NzUVWVhbS09PZ6BmdRgoKCoK3tzdcXV3h
4ODAzlEyNjYeVVJSqv/9738fSqJ7U5nTPU6QKP8AudfnY5LqrZ2x6z/rP47Vr0GA
GfHA86RevYKYsnc5HM6n69evV1dRUck3MTEZP3fuHFuYoPN+tGpIx7czMjLYjF1+
fj6rKVANfho5ZopsKibbkSsuLkZRUdG0+nxOTg6ys7PZYohQKGRgR0ZGIjQ0FAEB
AfDy8mKA084dOTxr8OjRow1btmyJlpOTo4c7GBON1yKm/jCJ8P9KTvN+hyx/rpIB
//n/tOb/6gSY0Tl8jpivxYQIm8ib/fvSpUtPffPNN6l6eno9tO1rZ2fHyODr64vg
4OBpzSBaUaRDoBkZGcjMzGTmn1YOnybZ2dnIzs5GZmYmWwKhs4VCoRCJiYmIi4tj
QIeFhSEoKIgtn9BDGu3t7dlBWVTLjx8/3r579+6cN954w48EdaYEdCOi8WfJZK8q
0fgvZU73WEuC54X/zsbv/wwBntA0mkeswSoOh/MGCXA+JZHu/i1btjioqKiUGhkZ
DVIyWFtbw8HBAVwu9yct29DQUNY4etro2UyJiYlh38/j8RAWFobQ0FDWFaQj6h4e
Hmw/j8FETxsAAAOSSURBVDaSKNjkmjaJlpbW3SNHjtR+8cUXqa+99po30XADArIW
Afo4We1WIoHdXvJ+tz1B4+kJH3Nlg73/rwnwFJewgEwUrSZu4W2iBX/lcDhfz5o1
6+jmzZvdDh48mKepqXnHzMxsghKCHktjZ2cHe3t71t2jvX0XFxc2zEGFfk52ONXR
0ZHduEGnk2hmQEE2NzeHiYmJRFtb+4Gamtrlb775pviTTz5JWr9+vd+sWbOsSeRu
QbTciETwmqRmf4ykcd/MAPxdEg9t4HA4rxCL+OKTgP9NcPmtCCBTMqYZwnxiDZaS
tuYGMuv+MTGL+4h/VFuwYIHOBx984PfNN99kqqqqNmlqat7S09PrNTExeUyB+hdk
0sjIaFhXV7dbU1Pzlrq6+oUjR45U7t27N/vzzz+Pf+eddwJWrFhhR8y2HgH3LMnR
tYmGnyFarkFM+kwt/4K8n/fJ+NbrZJZyBdH2xQT4eTJdvVm/Ffi/OQGe4haoRXiR
EOFNDoezmSxBbicB0n5ChmMkcDpOHvyZOXPm6C9duvScoqKi/caNG103btzo/u67
7wbIysaNGz3feOMNj1deecV5+fLldgsWLLCQAfZJ4GrKgHuS/D4NUpVTIetZR4iG
HyCVuq8IcT8nI9vvE/P+JjnDZyV5j/Iy2zyzZOKkZ/4rWPw3fukMEshahMUk511D
at6byEN8nzzUz8mRaLuJaT1IiKFE0igVoolqBDANAt5M0SBEUiPfr0zIpURe7xB5
7X1Em3cTjd5OtPpT8vdsIWR9h0zovkm0fD0x76vI+3mRBHbzZ2r6fwv4/zoBnkIE
ahHmELOoQLpeLxPT+TqJF/5EAPiMgLKTaOBeQox9RDMPkhaqrBwkX9tPvvdrYmVm
gvwZMd9bye/7IzmYaSMBeA2pdL5EXNkCot3ziS+fQ8B+nvj152gu/98G/X+KADPS
RVkiyJEHSInwInngigSAN0gw9TYBZzMB6gOimX8m4H0oI1uJ/Jl8zwfEuvyJZCR/
JK/3FnntjYR0rxKNXk3899IZWj13BtgUcFnQ/yc0/n+SAL/AOsgRjZpPyLCYaN5S
QooVxMeuIiCtIUR5mqwhsprIKvLzK8jrLSOvvYQAvZiATbWcAi73v6jV/9cIIBsw
Uqswl1iG+QSUBYQYC2Vk0T8Q2e9VILJABmRqzuf9jEn/n9Tq/zME+Aek+K/J/69g
/58gwG9JiP9LQD9N/h/B7OfTj1wvlwAAAABJRU5ErkJggg==
}

img4: load 64#{
R0lGODdhZAAnAPcAAP///wAAAAAAVQAAqgAA/wBVAABVVQBVqgBV/wCqAACqVQCq
qgCq/wD/AAD/VQD/qgD//1UAAFUAVVUAqlUA/1VVAFVVVVVVqlVV/1WqAFWqVVWq
qlWq/1X/AFX/VVX/qlX//6oAAKoAVaoAqqoA/6pVAKpVVapVqqpV/6qqAKqqVaqq
qqqq/6r/AKr/Var/qqr///8AAP8AVf8Aqv8A//9VAP9VVf9Vqv9V//+qAP+qVf+q
qv+q////AP//Vf//qv///wAAANjQ0AgIAHBwcCAgGMC4uEhIQKCYmP//8IiAgDAw
MGBgWPDo6Ojo4LCwqBAQENDQyFBQUJCQiODY2Njg2IB4eCgoIMjIwKigoKCooDg4
MGhoYLi4uJiYmEBAQAAIANjY0BAQCAgQCAgICHh4cCAgIMjAwMDAuFBQSEhISKCg
mP///4iIgGBgYP/w8PDw6Ojw6Ojo6LiwsLCwsBgQENDQ0FhQUJiQkJCQkOjg4ODg
2ICAeDAoKCgoKMjIyLCoqKiooEA4ODhAODg4OHBwaGhwaGhoaNjY2Hh4eMDAwKCg
oIiIiPDw8Li4sBgYEFhYUJiYkODg4ICAgDAwKKioqEBAOBgYGFhYWAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgICAgICAgICAAAACwAAAAAZAAnAAAI/wCBCBxIsKDBgwgTKlzIsKHDhxAjSpxI
saLFixgzatzIsaPHjxO9MHHjhlESICssLHETpRGTKUCmYFoEhA+RRkQOkWQSpYkb
LiRNCmHChQsTIkCMYDrExAoVgohGklykVIlAKzxBArHwD0qQf0qQ/PN3JQiULn6g
2Lnyb0kUKFcaXepqBsoTSWCCXPL3j4iiIEGKQFnyxkoQf1D+XXEyUNHYuf/yfPnn
xUvbJlrV/Jti+cuSf4uSHPp3iGuif/+GWPnnpkniMpMSCYmiWBGRfxZWtFVixUuS
REEO2fnsZaCRf4QUEQKtiK8/f1iaNDnpkeuSz2oQKxKS55+a21CGHP8x+28SlcSo
/9HBgnovFCRi0xeRc/uQpNGH4GA+nv6KEUS39UVFFdNRx5FmiG2RBRRgZEHFalLE
B4UXgPnjxVv+TFLZH45dckRbf0zRlhd5rEDfP1wIIUVfTmDWRVtIuOGdEEYk1gUW
QhTo0YqJdNGFIlIEcQUTiTHSBRjIodWVEX8ktsQXhOTB3hVdfHaIZVBAqYZt/1wy
yD9BrGCHi119YcaMNQYxBxaSJGEgR0z4o4QRTGKBiT96JcJhkH4d4s8XimCxBBSE
ZvgWIV1MAYUfk0DxSHhmYMEIFJcM5sUfdsQBhCKEEvrFIoj8sUQRXfTk5keNUIEF
jlRQIQQWXWD/+kcUdnDI5B9oGCGEJFEowqQdiFBhhyJ/FDsrFkZgQauwHBpLRSNA
NOIEhz9iYYckktiBBRWnepREE8IK4QQc0taKBaaSuGqtq3/sKsmr54YxoB12CCEE
vdquGsWu9wbarhNuJpGtImcoS4UcTiAibiNvdvStgd86IXGB0jEch3QnNeGEHi1O
1wTD0smBsBNUNBFHIxq3KokcASfRCLZUSFLgtwxf1Agi+OZ8bxSzznqvHTyfS+vQ
PM8WBc/H/qHsrDwf7fSxSP/xcctAtOyEvvQ6vW/O9P6MrxwH2fFhemSXjdpXZqet
ttlop11EJNQ17GYjjbZ99tpkm0FHQXJY/4L334AHrrYfUTgUCF+Cl73Em3Yk7vjj
Zj/yB0SR2J24P08NJITZQywhCCFbECLIFn4MkbaHn4suuiWIpweF6qALckXrZOdh
kBxGBPIEIgcxUfYVlhDC1tpBSEJQ42VDoYjLbwBBLhxPQEY2UuS6DC0cy5HNhfMM
uynHCmeSbYmmA8XBCCUMBsYEFgWFET5qWlS9guVkY07Q5mWPYYRAcFShx0CHK1sh
BiIycoXhM9MbSLCoE8D0rIEgcfCd2aCwN4JI8B9gWIFAdLO2IWROIPirXxcEkgcz
mCELArGD9FCDFCBI4ghX6MMS+kC7fwxwU1eAAkyAYAf0dMl4AwkQav9M1589ECQS
ZEMhEAKBJLXZT3Nm059A+AAmqwAhCkUo2yEEIolB+GELW6CE5W6IhbRYsQ1kWwL5
gCAE6WEiUT5kBEHQ4EMNLpF+6fEHEEE4wRECgQpaKJxAJmG2FgJhaklwgiAEOJA9
MAYIdCTbEQzkiDGghhBgAwIj0sMEqGQRg4HYIN6CUIXjmc0ffhxIEqgQJ7PdEAhy
wJbEJkO2V0pCD2BzAhFahwmCOAJxhkQD4u5AED0g8B9KZOLa9AiVKKJBIGuwYhNW
ZDZDCMQJMJThEmp4Q1EV4QiMacTY/vEFAwkTNZQAohC3OJAwSE+JWsAjavxRyoEg
T4RXAUMF43D/zPS0EBFnAsMQgtBEfwrECGL4Rx8yx4X+TEcgcthCeiwRCT+lJ37G
qaNAAkGoIqxwiHsEAiJO6Uc0EgIOAgFEQVHDzjegAQ04ekI/bSiQJCgCDUCUwzGh
MDkAyhMSzRuIiFADBozK4Wh76MJH/cE7e3JOkEjczEAuyMKDJIGW6SnDQeAgRNRM
oiCTMtsRHlpTrKrHIIj4ZHqGENIQpmcMjHgCICR4iTWswBFd/UcasPCEFfT1CX01
g922kIiicKEQh4BE9sh2hZBCkgmEoMQS0jCFbgmkC7Szwh/oZASYesGSZAvCB9mY
tufQLi9jqGFX/DGGIUABMaCFHGqscBCNq7GspgN5w3hC+6hOQSGhZfOgKWVLXMH5
I5QPMYxsnwjRmRb3uROkCUOSoITiCqJh9/ktFMbw2kJ51x+uDe92XyuG7iLGH+Ut
L2K0C1vvuna96DVLGRpWkDi4wSzcXe94uVte83ZXDUKgb9Uq1ogCy8HABWZYggv8
MQYvmMEEPjDGPtbgBR+YwQATcE3loB8KN+JiC/7YhR28EA0XxMQQQbFWVsziFrv4
xR4JCAA7
}


;for main menu
hz: 0
dftsize: 48X48
zoomsize: 128X128


info0: "Choose an option or Exit the program"
info1: "Create a data file"
info2: "Setting acquisition"
info3: "Collect data" 
info4: "A/D sampling on"
info5: "A/D sampling off"
info6: "Grey-Soft  Bluetooth BT3A015G device is active"
info7: "Grey-Soft  Bluetooth BT3A015G device is inactive. Check the connection. Simulation mode."
info8: "Connecting BT3A015G Grey-Soft device" 
info9: "Scale "
info10: "Frequency"
info11: "X grid cell size"
info12: "Y grid cell size"
info13: "X offset" 
info14: "Spline Filter "
info15: "Identification"
info16: "Date of birth"
info17: "Date of recording"
info18: "Protocole" 
info19: "Notes"
			
Alert0: "Quit this program ?"
Alert1: "Please complete identification !"
Alert2: " exists! Delete files ?"
Alert3: "Clear all data ? "
Alert4: "No file"
Alert5: "Attention ! Not saved data "
Alert6: "Données sauvegardées "
Alert7: "Sampling data! Stop A/D conversion first!"
Alert8: "Data are cleared "

comm1: "Create"
comm2: "Start"
comm3: "End"
comm4: "Save"
comm5: "Clear"

rep0: "Quit"
rep1: "Yes"
rep2: "No"
rep4: "Validate"
rep5: "Cancel"

subinfo0_1: join "Wireless Device Conversion Program" 
		[newline "www.grey-soft.com"
			newline "2008-2010"]


grille: 20x40
HSize: x: y: 0

;colors  for x y and z axis
col: mint
colx: 255.255.0
coly: 0.255.0
colz: 255.0.0
col2: 82.82.82

spline_value: 5
freq: 25
mfreq: 50
scale: 2.5
xmax: 800
ymax: 600
vxsize: xmax - 220
vysize: (ymax - 150) / 3

vg: 0
timeUnit: round ((1 / freq) * 1000)
pasx: 5
DataBuffer: copy []

cancreate: true
connected: stop: can_clear: fcreated: acqon: dsaved: false
subject-dir: ""
sfile: datafile: Alert4

count: essai: 0
maxacq: 2147483647 / 3 
valx: valy: valz: 0.0
acqvalx: acqvaly: acqvalz: 0.0
; for adc and xyz sensibility
unit_adc: 2560 / (2 ** 24)
sensib: 720


;for visualisation
init_plot: does [
	plotx: copy [pen colx spline spline_value]
	ploty: copy [pen coly spline spline_value]
	plotz: copy [pen colz spline spline_value]
]

init_rot: does [
	rotx: copy [transform anglex 58x75 1.0 1.0 0x0 fill-pen colx box 33x50 81x100]
	roty: copy [transform angley 58x75 1.0 1.0 0x0 fill-pen coly box 33x50 81x100]
	rotz: copy [transform anglez 58x75 1.0 1.0 0x0 fill-pen colz box 33x50 81x100]
]
draw_grid: does [
	append clear visux/effect reduce ['grid grille col2 ]
	append clear visuy/effect reduce ['grid grille col2 ]
	append clear visuz/effect reduce ['grid grille col2 ]
]

draw_values: does [
	draw_grid
	append visux/effect reduce ['draw plotx]
	append visuy/effect reduce ['draw ploty]
	append visuz/effect reduce ['draw plotz]
	visux/text: join " " [to-string timeUnit " ms"]
	visuy/text: join " " [to-string timeUnit " ms"]
	visuz/text: join " " [to-string timeUnit " ms"]
	show [visux visuy visuz]
]

; for bluetooth access: depends on OS
; for mac OSX
;system/ports/serial: [cu.GREYSOFTAccelerator02-S]
;for windows
; nb de ports 10 max car après Rebol ...
nbp: 10
for i 3 nbp 1 [append system/ports/serial to-word join 'com i]
;on adapte ensuite en fonction exemple AC1 on com3

quit-requested: does [
    ;if not dsaved [Alert alert5]; not saved data
	if (confirm/with Alert0 [Rep1 Rep2]) [ if connected [close p] quit]	
]



Activate_BT: does [
	fl: flash info8
	wait 0.01
	
	if error? try [ 
	 				p: open/no-wait serial://port3/115200/8/none/1
	 				connected: true
	 				insert p join "ENABLE" newline
	 			    unview/only fl
	 				] [unview/only fl alert info7]
				
]

Select-Option_H: does [
switch hz [
		0 [b0/size: zoomsize abox/pane: view0 infos1/text: info0]
		1 [b1/size: zoomsize abox/pane: view1 infos1/text: info1]
		2 [b2/size: zoomsize abox/pane: view2 infos1/text: info2]
		3 [b3/size: zoomsize abox/pane: view3 infos1/text: info3]
	]
	show infos1
	Update-view abox 5x70
	show [b0 b1 b2 B3]
	wait 0.25
	b0/size: b1/size: b2/size: b3/size: dftsize
	show [b0 b1 b2 B3]
]


Update-view: func [pnl offs]
	[pnl/pane/offset: offs show pnl]
	


	
; starting view 
view0: layout/size [
	backdrop sky
	origin 0x0
	box as-pair xmax - 25 ymax - 90 water subinfo0_1 frame red
	at as-pair ((xmax / 2) - 150)  80 pub: image img frame red
	at as-pair ((xmax - 25 / 2) - 50)  ymax - 220  pub2: image img4 frame red
	at as-pair ((xmax  - 25 / 2) - 50) ymax - 150  quitbtn: btn red 100 Rep0 [Quit-Requested]
]as-pair xmax - 10 ymax - 10


; sauve les informations de base du sujet 
Sauve_Header: does [
		; informations concernant le sujet
		write to-file sfile join "Fichier: " [ssfile newline]
		write/append to-file sfile join "Ouvert le : " [now newline]
		write/append to-file sfile join "Identification : " [sujet-id/text newline]
		write/append to-file sfile join "Date de naissance : " [sujet-ddn/text newline]
		write/append to-file sfile join "Date de passation : " [sujet-ddp/text newline]
		write/append to-file sfile join "Protocole : " [sujet-condition/text newline]
		write/append to-file sfile join "Notes : " [sujet-notes/text newline]
		
]

Save_Data: does [
	if fcreated [
	    ; créee le fichier de donnees
		write to-file datafile join "Fichier: " [ssfile " - Examens "  newline]
		write/append to-file datafile join to-string now/date newline
		write/append to-file datafile join to-string now/time newline
		write/append to-file datafile join "Fréquence: " [freq " Hz" newline]
	    write/append to-file datafile DataBuffer 
	    dsaved: true
	    alert Alert6 
  ]
]

;subject info view
view1: layout/size [
	backdrop sky
	origin 0x0
	space 5x5
	across
	box as-pair xmax - 25 ymax - 90 water frame yellow
	at 5x15 lbl 200 left info15 sujet-id: field 150 "S000"
	at 5x40 btn 200 left info16 [tmp: request-date 
	if not none? tmp [sujet-ddn/text: tmp show sujet-ddn]]
	sujet-ddn: field 150 to-string now/date - 4 
	at 5x65 lbl 200 left info17 sujet-ddp: field 150 to-string now/date
	at 5x90 lbl 200 left info18 sujet-condition: field 150 ""
	at 5x115 lbl 200 left info19 sujet-notes: area 150x150 wrap
	at 390x15 nflb: text-list 300x250 data read to-file data-dir
	
	at as-pair xmax / 2 - 100 ymax - 200  btn 100 yellow  rep4 
		[if empty? sujet-id/text [ Alert Alert1  exit] 
			ssfile: join sujet-id/text ".txt"
			subject-dir: join data-dir [sujet-id/text "/"]
		  	either exists? subject-dir [cancreate: false 
		  	temp: parse/all subject-dir "/"
		  	if (confirm/with join "Le sujet " [ last temp Alert2] [rep1 rep2]) [cancreate: true]]
		[cancreate: true]
		if cancreate [
			if not exists? subject-dir [make-dir subject-dir]
			sfile: to-file join subject-dir ssfile
			datafile: to-file join subject-dir "examen.txt"
			fcreated: true 
			Sauve_Header nf/text: to-string datafile show nf
			clear DataBuffer count: 0  essai: 0
			infos2/text: join "Essai : " to-string nessai
			show infos2
			dsaved: false]
		hide-popup
		abox/pane: view3 show abox
			Update-view abox 5x70
		]
		 
	btn 100 yellow rep5 [fcreated: false nf/text: Alert4  show nf abox/pane: view0 show abox
			Update-view abox 5x70]
] as-pair xmax - 10 ymax - 10


	
;options for analog inputs

view2: layout/size [
	backdrop sky
	origin 0x0
	space 5x5
	across
	box as-pair xmax - 25 ymax - 90 water  frame green
	
	at 100x15 lbl 200 left   info9 ni-volt: rotary 160 green "1: 0 +5" "2: 0 +10" [
			selection: to-integer first parse face/text ":"
			switch/default selection [
				1 [amin: 0 amax: 5 scale: 5]
				2 [amin: 0 amax: 10 scale: 10]
		]
		[amin: 0 amax: 10 scale: 10]
	]
	
	at 100x50 lbl left 200  info10 fsl: slider green 100x25 [ni-freq/text: 1 + to-integer fsl/data * (mfreq - 1) 
								show ni-freq freq: to-integer ni-freq/text]
	ni-freq: info 50 center green to-string freq 
   
	
	at 100x85 lbl 200 left info11 xsl: slider green 100x24 [xdiv/text: 10 + to-integer xsl/data * (mfreq - 10) 
						show xdiv] 
	xdiv: info 50 center green to-string first grille
	at 100x120 lbl 200 left info12 ysl: slider green 100x24 [ydiv/text: 10 + to-integer ysl/data * (mfreq - 10) 
						show ydiv] 
	ydiv: info 50 center green to-string second grille
	
	at 100x155 lbl 200 left info13 psl: slider green 100x24 [ pasxtext/text: 1 + to-integer psl/data * 49 show pasxtext]
		pasxtext: info 50 center green to-string pasx
	
	at 100x190 lbl 200 left info14 sll: slider green 100x24 [sptext/text: 1 + to-integer sll/data * 99 show sptext ] 
		sptext: info 50 center green to-string spline_value
		
	
	at as-pair xmax / 2 - 50 ymax - 150  btn 100 green  rep4
			[if acqon [visux/rate: freq]
			timeUnit: round ((1 / freq) * 1000)
			xx: to-integer xdiv/text yy: to-integer ydiv/text
			grille: as-pair xx yy 
			
			spline_value: to-integer sptext/text
			pasx: to-integer pasxtext/text
			draw_values
			abox/pane: view3 show abox
			Update-view abox 5x70] 
	
	
	
	do [fsl/data: freq / mfreq 
	xx: to-integer first grille
	yy: to-integer second grille
	xsl/data: xx / mfreq ysl/data: yy / mfreq 
	
	]
]as-pair xmax - 10 ymax - 10


;start job 


Clear_Screen: does [
	datacount/data: count / maxacq
	dtc/text: count
	x: 0 
	init_plot
    draw_values 
	show [datacount dtc]
 ]




Show_Acq: does [
		if x > (vxsize) [Clear_Screen]
		if connected [
			tmp: ""
			gs: copy p 
	
			if not empty? gs [
			    code: skip copy/part gs 6 4 ; be sure to get the coorect values
				if (code = "XA")[
				     ;3x15 bytes + 3x1bytes pour CRL
				    tmp: parse copy/part gs 48 ":"
					if error? try [
						{1 et 2 x axis 3 et 4 y axis 5 et 6 z axis}
						valx: to-integer to-issue tmp/2 ; transformer chaine hexa en integer
						valy: to-integer to-issue tmp/4 
						valz: to-integer to-issue tmp/6
						; on calcule les valeurs en G en fonction de la sensibilité ADC et Capteur
						acqvalx: valx * unit_adc / sensib 
						acqvaly: valy * unit_adc / sensib 
						acqvalz: valz * unit_adc / sensib 
						] 
						[acqvalx: acqvalx acqvaly: acqvaly acqvalz: acqvalz ]
			    ]
			]
		]
		
		; show G in X Y Z Axis
		if not connected [acqvalx: sine random 100 acqvaly: tangent random 50 acqvalz: cosine random 200]
		if error? try [y: HSize - ((acqvalx / scale) * HSize) ] [y: 0] append plotx as-pair x y
		if error? try [y: HSize - ((acqvaly / scale) * HSize)] [y: 0] append ploty as-pair x y
		if error? try [y: HSize - ((acqvalz / scale) * HSize)] [y: 0] append plotz as-pair x y
		
		; calculate x y z angles  in degrees par ATAN2
		;anglex: 180 * (Atan2 acqvalx acqvalz  ) / pi 
		;angley: 180 * (Atan2 acqvaly acqvalz) / pi 
		;version Duc
		if error? try [carx: acqvalx / square-root ((power acqvaly 2) +  (power acqvalz 2))] [carx: 0]
		if error? try [cary: acqvaly / square-root ((power acqvalx 2) +  (power acqvalz 2))] [cary: 0]
		if error? try [carz: acqvalz / square-root ((power acqvalx 2) +  (power acqvalz 2)) / acqvalz] [carz: 0]
		anglex: Arctangent carx 
		angley: Arctangent cary
		anglez: Arctangent carz
		ax/effect: reduce ['draw rotx]
		ay/effect: reduce ['draw roty]
		az/effect: reduce ['draw rotz]
		ax/text: join "X Axis "  to-integer anglex
		ay/text: join "Y Axis " to-integer angley
		az/text: join "Z Axis " to-integer anglez
		append DataBuffer join acqvalx [" " acqvaly " " acqvalz newline]
		x: x + pasx
		count: count + 1
		console/text: join "x axis " [round/to acqvalx .01" y axis " round/to acqvaly .01 " z axis " round/to acqvalz .01]
		show [visux visuy visuz console ax ay az]
		if count >= maxacq [save_data acqon: false count: 0 visux/rate: none]
]
	
view3: layout/size [
	backdrop sky
	origin 0x0
	space 5x5
	across
	at 65x0 nf: info as-pair (xmax - 220) 25 Alert4  frame blue
	at 0x0 box as-pair 60 ymax - 90 water frame blue
	at 65x30 visux: box as-pair (vxsize) (vysize)  
	col join " " [to-string timeUnit " ms"] left bottom
	with [rate: none]
	feel [engage: func [face action event]
	     [switch action [time [show_acq]]
    ]]
    frame colx
    ax: box  as-pair (vxsize / 5 ) (vysize) "X Axis" center top frame colx
    
    at as-pair (65) (32 + vysize) 
    visuy: box as-pair (vxsize) (vysize)  col join " " [to-string timeUnit " ms"] left bottom  frame coly
    ay: box as-pair (vxsize / 5 ) (vysize) "Y Axis" center top frame coly
    at as-pair (65) (32 + (vysize * 2)) 
    visuz: box as-pair (vxsize) (vysize)  col join " " [to-string timeUnit " ms"] left bottom frame colz
    
    az: box as-pair (vxsize / 5 ) (vysize) "Z Axis" center top frame colz
    
    
    ;for x scale
    at as-pair 65 ymax - 115 console: info  as-pair xmax - 390 25 water frame blue   ; xmax - 120
    datacount: progress 80x25 water frame blue dtc: info 80x25 water frame blue
    
   ;start acquisition
	at 5x25 btn 50 blue comm2 #"s"
	[
			either not acqon 
			[essai: essai + 1
			datacount/data: count / maxacq
			dtc/text: count
			show [datacount dtc]
			Clear_Screen
			console/text: "0.0" 
			show console
			infos1/text: Info4
			infos2/text: join "Measure " to-string essai
			append DataBuffer join "Essai: " [to-string essai newline]
			append DataBuffer join "Debut: " [ now/time newline]
			visux/rate: freq
			acqon: true]
			[Alert Alert7]
			show [Visux visuy visuz infos1 infos2]	
    ]
	; stop acquisition
	at 5x50 btn 50 blue comm3 #"d"
		[if acqon [ visux/rate: none
		            show visux ; necessaire pour mettre à jour le rate
					append DataBuffer join "Fin: " [ now/time newline]
					append DataBuffer newline
					infos1/text: info5
					show [infos1 console]
					acqon: false ]
		]
	
	
	; save data
	at 5x75 btn 50 blue comm4 #"a"
	[ if not acqon [Save_Data]]
	
	;clear task
	at 5x100 btn 50 blue comm5 #"c"
	[ 
	   if not acqon [
	       if fcreated [
	            if not dsaved [Alert alert5]]
	            ; dans ts les cas 
	            if (confirm/with Alert3 [Rep1 Rep2]) [
		                    count: 0
		                    essai: 0
		                    infos1/text: Alert8
		                    infos2/text: "" 
		                    show [infos1 infos2]
		                    clear DataBuffer
		                    Dsaved: false
		                    Clear_Screen
		         ]
           ]
	]	
] as-pair xmax - 10 ymax - 10

mainwin: layout/size[
	backdrop sky
	origin 0x0
	across
	at 5x5 abox: box as-pair xmax - 10  ymax - 10 sky frame blue
	at 10x10 
		b0: image img0 dftsize [hz: 0 Select-Option_H] frame red
		b1: image img1 dftsize [hz: 1 Select-Option_H] frame yellow
		b2: image img2 dftsize [hz: 2 Select-Option_H] frame green
		b3: image img3 dftsize [hz: 3 Select-Option_H] frame blue
	at 250X25 infos1: info 405x25 info0 infos2: info 115x25
	do [draw_grid]
] as-pair xmax ymax



; start 
Activate_BT

either connected [append subinfo0_1 join newline info6 ] [append subinfo0_1 join newline info7]
init_rot
view/new center-face Mainwin
HSize: (visux/size/2) - (visux/size/2 / 2)
psl/data: 0.1
sll/data: 0.05
insert-event-func [
	either all [event/type = 'close event/face = MainWin][
		quit-requested
	][event]
]
abox/pane: view0 show abox
Update-view abox 5x70
do-events